Finding free electron gas Green function in Fourier space

In summary, the conversation discusses the use of definitions and quotes from a book to explain the concept of a free electron gas. The speaker expresses confusion about the use of exponential terms and step functions in the equations, seeking clarification on how to deal with them. They then ask for help in understanding the concept in relation to the ground state of the system at a temperature of 0 Kelvin.
  • #1
kakaho345
5
0
Homework Statement
See below
Relevant Equations
See below
As in title:
1681350014004.png


Plugging in the definition is straight forward, I am too lazy to type, I will just quote the book Fetter 1971:
1681350111348.png

1681350169049.png

1681350186563.png

1681350198430.png

Up to here everything is very straight forward, in particular, since we are working on free electron gas, ##E=\hbar \omega##

However, I have no idea how to arrive here:
1681350443696.png

I understand that ##e^{ik\cdot(x-x')}## is from terms like ##\psi=e^{ikx}c##, however, the term ##e^{-i\omega_k(t-t')}## the sign doesn't look right to me for the two time region should have different signs in the exponential. Also, I don't know how to deal with the exponential sandwiched between the field operator. The step function in time is from the two pieces of time regions, but I am not sure on the step function in k. I may be from the filled Fermi sea.

I understand this is a very simple question. However, I have been sitting whole day dealing with this. Any help will be appreciated.
 
Physics news on Phys.org
  • #2
You simply have to think about, how the ground state looks like! Note that at ##T=0## the system is in a pure state of lowest possible energy under the given constraints. First think what is the constraint here!
 

Similar threads

  • Advanced Physics Homework Help
Replies
7
Views
4K
  • Advanced Physics Homework Help
Replies
9
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
1K
Replies
1
Views
2K
  • Atomic and Condensed Matter
Replies
0
Views
628
  • Quantum Physics
Replies
1
Views
696
  • Advanced Physics Homework Help
Replies
1
Views
2K
Replies
4
Views
2K
Replies
3
Views
610
Replies
8
Views
1K
Back
Top