- #1
Edwin
- 162
- 0
I did some number crunching and found the following:
Given n equations in n unknowns:
a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f
If there is a solution to these equations, you can use substitution to transform these equations into a set of linear equations and solve using linear algebra.
Let f(x) = u and g(y) = v
Then
a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f
which becomes
a*u + b*v = c
d*u + e*v = f
Which can be solved for u and v using linear algebra.
x and y can then be solved for by solving the corresponding equations
u = f(x), and v = g(y) thus making it possible to solve systems of non-linear equations of the form above using linear algebra.
Any thoughts?
Edwin G. Schasteen
Given n equations in n unknowns:
a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f
If there is a solution to these equations, you can use substitution to transform these equations into a set of linear equations and solve using linear algebra.
Let f(x) = u and g(y) = v
Then
a*f(x) + b*g(y) = c
d*f(x) + e*g(y) = f
which becomes
a*u + b*v = c
d*u + e*v = f
Which can be solved for u and v using linear algebra.
x and y can then be solved for by solving the corresponding equations
u = f(x), and v = g(y) thus making it possible to solve systems of non-linear equations of the form above using linear algebra.
Any thoughts?
Edwin G. Schasteen