- #1
EvLer
- 458
- 0
So we talked about this in class but there's nothing in the textbook. Basically I want to make sure I get this:
Reals are uncountable, while natural numbers, integers, and rationals are countable. So really the cardinality: |Z| = |R| = |Q| < |R|
then there are only 2 sizes of infinity: inifinitely countable and infinitely uncountable. Right?
Another question I have is this: can someone give an example when Cantor's diagonalization is applied to countable sets and how it works out...
thanks
Reals are uncountable, while natural numbers, integers, and rationals are countable. So really the cardinality: |Z| = |R| = |Q| < |R|
then there are only 2 sizes of infinity: inifinitely countable and infinitely uncountable. Right?
Another question I have is this: can someone give an example when Cantor's diagonalization is applied to countable sets and how it works out...
thanks