Learn Category Theory: Best Introductory Books & Articles w/ Physics Examples

In summary: I have never really learned much of it, but the bits I have were all tied together by this categorical picture. In summary, the conversation covers a discussion about category theory and its applications in mathematics, computer science, and theoretical physics. It is mentioned that John Baez is an expert in category theory and has written books and blogs on the subject. The book "The Joy of Cats" by Adamek, Herrlich, and Strecker is recommended as a good resource for learning category theory. Examples of category theory's use in algebra, topology, and representation theory are given. It is also noted that many important constructions in mathematics can be viewed as functors between categories.
  • #1
Son Goku
113
21
Essentially I'd just like to learn more about it in my own spare time. Is there any particularly good introductory books or articles?

I'd particularly like anything that uses examples from physics, but it isn't essential.
 
Physics news on Phys.org
  • #2
There's alway http://en.wikipedia.org/wiki/Category_theory" . Dummitt and Foote has a decent intro to category theory as an appendix.
 
Last edited by a moderator:
  • #3
John Baez is one of the experts in category theory who often posts to his blogs 'n-category Cafe' or 'This Week’s Finds in Mathematical Physics'.

Week 245 has talks in this theory from a U-Toronto workshop at the Fields Institute January 9-13, 2007.
http://math.ucr.edu/home/baez/week245.html
 
  • #4
John Baez is not an expert in category theory.

Mac Lane is the standard book, but it is very hard going.
 
  • #5
i liked peter freyd's little book in the 60's and 70's.

hungerford ahs a short little section that helps too.

but the amin point is to make yourself always focus on the maps betwen objects instead of just the obejects.

e.g. from a pair of spaces one can form a product space. but also from maps of two pairs of spaces, obe derives maps of their products.

]this si thew whole point. which constructions of spaces allow comparable constructions of maps between those spaces?

the fundamental group assigns to a space maps from a circle into that space. but also think abiout how a map of the spaces indiuces a map of their fundamental groups. now you are thinking "categorically".
 
  • #6
the fact that the product of determinants is the determinsnt of the product matrix says that a determinant isa functor from amtrices to numbers.

the chain rule says that the derivative is a fucntor from pointed functions to numbers.

at some point people realized that amny important constructions were fucntors. but to=defione functors, betwen categories, one ahd to define categories.

i recommend the original apper by maclane and who?

matt, what is the original paper defining exact sequences and so on, and especially natural transformations, with the double dual as the basic example? was it by eilenberg and maclane?

is this it?

General Theory of Natural Equivalences
S Eilenberg, S MacLane - Transactions of the American Mathematical Society, 1945 - JSTOR
General Theory of Natural Equivalences. Samuel Eilenberg. Saunders MacLane.
Transactions of the American Mathematical Society, Vol. 58, No. 2, 231-294. ...

it seems to be available free on the internet.

do you think this is a good one matt?
 
Last edited:
  • #7
I learned some category theory from a book called "The Joy Of Cats" by Adamek, Herrlich and Strecker. Its a fairly decent book. But then i also had a good instructor to go along, so i am not sure, how good it might be for self study.

-- AI
 
  • #8
categories are nothing. functors are something. natural transformstions are more interesting still.
 
  • #9
So I guess you really love categories of functors with natural transformations as the morphisms.

Incidentally, in a homological algebra course, it was after talking about this and bi-, tri, ... , infinity-categories, that my professor remarked about people calling category theory abstract nonsense.
 
  • #10
Even us category theory advocates use that term. It just means: true for elementary formal reasons. Often things are proven in some concrete case in a very inobvious way, but are true for for other simpler reasons in some manner. I.e. in the more general case the proof is actually easier.
 
  • #11
matt grime said:
John Baez is not an expert in category theory.

Mac Lane is the standard book, but it is very hard going.
I got out Mac Lane on your suggestion. I must say this is an incredibly interesting branch of mathematics. I think it's a really "clean" way to view concepts from other areas.

mathwonk said:
the fact that the product of determinants is the determinant of the product matrix says that a determinant is a functor from matrices to numbers.
Thanks for that example. Solidified the concept a bit for me.

I was just wondering, in what other areas of mathematics has category theory been useful. (I'd assume it has been useful in Algebraic Topology.)
 
  • #12
All parts of algebra (so that is geometry and topology too). Some parts of analysis. Theoretical physics. Computer Science. Is that enough? Few parts of mathematics are not touched by category theory.

Silly examples:

a group is a category with one object and all morphisms invertible. A representation of a group is a functor from this category to the category of vector spaces. An isomoprhism of representations is a natural transformation of functors.

completion of a normed vector space is left adjoint to the forgetful functor from banach spaces to normed vector spaces.

classifications of things are functors (moduli spaces). There is a functor from the genus 2 curves to abelian varieties of dimension 2 (an equivalence, right, roy? curve to jacobian, jacobian to the theta divisor or some other such slogan).

The representation theory of a field is essentially the same as the representation theory of nxn matrices over that field - Morita equivalence.
 
Last edited:
  • #13
matt grime said:
All parts of algebra (so that is geometry and topology too). Some parts of analysis. Theoretical physics. Computer Science. Is that enough?
Yeah. Computer Science surprised me to be honest. Of course though, it doesn't matter how "useful" it is. I was just idly wondering how much it had seeped into the general language of mathematicians.

matt grime said:
a group is a category with one object and all morphisms invertible. A representation of a group is a functor from this category to the category of vector spaces. An isomoprhism of representations is a natural transformation of functors.

completion of a normed vector space is left adjoint to the forgetful functor from banach spaces to normed vector spaces.

classifications of things are functors (moduli spaces). There is a functor from the genus 2 curves to abelian varieties of dimension 2 (an equivalence, right, roy? curve to jacobian, jacobian to the theta divisor or some other such slogan).

The representation theory of a field is essentially the same as the representation theory of nxn matrices over that field - Morita equivalence.
Thanks for the examples. I really like the representation theory example.
 
  • #14
Hi matt grime

Could you clarify your comment in your post of 02-13-2007, 06:41 PM?

I am confused because why would so many university math / physics workshops employ a non-expert to discuss category theory.

Counterparts of yours in ‘Beyond the Standard Model’ [Physics] and others who comment in that forum appear to regard the individual as an expert in category theory as it relates to physics.
 
  • #15
Son Goku said:
I was just idly wondering how much it had seeped into the general language of mathematicians.
You know how you denote the domain and range of a function with the notation [itex]f : D \rightarrow R[/itex]? (AFAIK) Before category theory, people wrote [itex]f \subseteq D \times R[/itex].
 
  • #16
Dcase said:
I am confused because why would so many university math / physics workshops employ a non-expert to discuss category theory.

knowing about some aspect of something doesn't make you an expert in the subject as a whole

Counterparts of yours in ‘Beyond the Standard Model’ [Physics] and others who comment in that forum appear to regard the individual as an expert in category theory as it relates to physics.

You have just answered your own question.

John is very knowledgeable about n-categories and how they pertain to physics. Most mathematicians are under your rules therefore experts in categories since they use them 'expertly' in their own field. That does not in any reasonable sense as far as I am concerned make them experts in category theory.

I know how string theory relates to algebra. That does not make me an expert in physics, or even string theory.
 
  • #17
Not to mention, a member posting in the Physics section is more likely to be biased to the physicist.

Hurkyl: My Teacher still uses that. He either even more ancient than I thought, or just old fashioned.
 
  • #18
Introduction to Category theory

Son Goku said:
Essentially I'd just like to learn more about it in my own spare time. Is there any particularly good introductory books or articles?

I'd particularly like anything that uses examples from physics, but it isn't essential.

I have written a website introducing category theory using examples in physics.

Hope you find it useful: http://topos-physics.org"

If you have any questions use the comments on the site or message me
 
Last edited by a moderator:
  • #19
matt grime

1 - Thank you for the clear and concise explanation of expertise in your post of 02-16-2007, 04:55 AM.

I agree that it is necessary and likely sufficient for expertise to be qualified as specifically as possible.

2 - I have become very interested in Game Theory because of what I perceive to be an extremely powerful analytic tool, particularly as used by Basar [engineer] and Olsder [mathematician].

Elements of Game Theory are used “... general search algorithm for movement strategies based on the detection of sporadic cues and partial information ...” in the Editor's Summary, 25 January 2007 of Nature 25 January 2007 Volume 445 Number 7126, pp339:
Letter: 'Infotaxis' as a strategy for searching without gradients
Massimo Vergassola, Emmanuel Villermaux and Boris I. Shraiman
doi:10.1038/nature05464
http://www.nature.com/nature/journal/v445/n7126/edsumm/e070125-10.html

I am somewhat surprised that the only mathematics ever to win a Nobel Prize is not listed in within the category of Mathematics. Even though the Nobel category was Economics, only a minor tweak should be needed for use in Energy Economics. The ‘Set Theory, Logic, Probability, Statistics’ appears to be an appropriate forum.

I have posted this thread on this forum:
Game Theory - applied mathematics - how powerful is it?
https://www.physicsforums.com/showthread.php?t=154996

Are you able to refer me to a website or other textbook [preferably with expertise noncooperative theory] so that I might learn more about this mathematical tool?
 

FAQ: Learn Category Theory: Best Introductory Books & Articles w/ Physics Examples

What is category theory?

Category theory is a branch of mathematics that studies the relationships and structures between different mathematical objects. It provides a formal framework for understanding the connections between different areas of mathematics and has applications in fields such as computer science and physics.

Why is category theory useful for studying physics?

Category theory provides a powerful tool for understanding the underlying structures and connections between physical theories. It allows for a more abstract and general approach to studying physical systems, which can lead to new insights and applications.

What are some good introductory books on category theory?

Some popular introductory books on category theory include "Category Theory for the Sciences" by David I. Spivak, "Basic Category Theory for Computer Scientists" by Benjamin C. Pierce, and "Category Theory in Context" by Emily Riehl.

Can you provide an example of how category theory is used in physics?

One example of how category theory is used in physics is in the study of quantum mechanics. Category theory provides a way to formalize the relationship between classical and quantum systems, allowing for a deeper understanding of the connections between the two theories.

Are there any online resources for learning category theory with physics examples?

Yes, there are many online resources available for learning category theory with physics examples. Some popular ones include the nLab website, which provides a comprehensive guide to category theory with many physics applications, and the Category Theory for Physicists blog, which offers a more informal approach to learning category theory with physics examples.

Similar threads

Replies
4
Views
1K
Replies
2
Views
2K
Replies
10
Views
5K
Replies
4
Views
2K
Replies
10
Views
2K
Replies
5
Views
2K
Replies
39
Views
4K
Back
Top