Question about the edge of the universe

In summary, the conversation discusses the concept of the edge of the universe and how looking at objects far away means seeing them as they existed a long time ago. It also delves into the expansion of the universe and how this affects the distance between objects. The question of whether it is possible to see the same object by looking in two opposite directions without the universe being closed is also raised. The conversation concludes with a discussion about the limitations of our telescopes and the possibility of seeing the Big Bang itself at the edge of the visible universe.
  • #1
gonzo
277
0
Question about the "edge of the universe"

Okay, the farthter away you look, the farther back in time you are seeing, right? When you talk about seeing some object 11 billion light years away, you are seeing something as it existed a long time ago.

So, since the universe is expanding, that means that 11 billion years ago, it was considerably smaller, right? Which means everything was closer together, right?

So, now I'm tyring to understand this in terms of looking in two opposite directions and seeing two different objects 11 billion light years away in each direction. From my current perspective they seem to be 22 billion light years apart, but from the time/age issue they should be really really close to each other, right? Can someone straighten this out for me?

And this just made me think of a related question. Can we see the same object by looking in two opposite directions (and without it meaning the universe is closed)? I was just thinking if we could see an object in one direction that was so old that it was from when the universe was really tiny, then anything equally far away in the opposite direction we see would have to overlap with that object if the universe was small enough back then.

Which of course, make me want to ask, why can't we see the big bang itself at the edge of visible universe in all directions? Is this a limit on the power of our telescopes? Or is it because of the accelerating expansion of the universe so that those photons are just never going to reach us? Or is it from something else entirely?

Thanks in advance for any help.
 
Astronomy news on Phys.org
  • #2
gonzo said:
Okay, the farthter away you look, the farther back in time you are seeing, right? When you talk about seeing some object 11 billion light years away, you are seeing something as it existed a long time ago.
Yes.
gonzo said:
So, since the universe is expanding, that means that 11 billion years ago, it was considerably smaller, right? Which means everything was closer together, right?
Everything was closer together, but, the universe was not smaller. To contend it was smaller requires something to compare it against, which is not available. The universe may very well have always been spatially infinite.
gonzo said:
So, now I'm tyring to understand this in terms of looking in two opposite directions and seeing two different objects 11 billion light years away in each direction. From my current perspective they seem to be 22 billion light years apart, but from the time/age issue they should be really really close to each other, right? Can someone straighten this out for me?.
Much bigger than 22 GY. See below.
gonzo said:
And this just made me think of a related question. Can we see the same object by looking in two opposite directions (and without it meaning the universe is closed)? I was just thinking if we could see an object in one direction that was so old that it was from when the universe was really tiny, then anything equally far away in the opposite direction we see would have to overlap with that object if the universe was small enough back then.
The universe appears to be too large to see the back of your head. See http://arxiv.org/abs/astro-ph/9801212.
gonzo said:
Which of course, make me want to ask, why can't we see the big bang itself at the edge of visible universe in all directions? Is this a limit on the power of our telescopes? Or is it because of the accelerating expansion of the universe so that those photons are just never going to reach us? Or is it from something else entirely? Thanks in advance for any help.
We can already see as far back as possible in the electromagnetic spectrum. They are called CMB photons. They were liberated about 400,000 years after the big bang.
 
  • #3
Since the universe is ever expanding, there is no edge. It keeps growing so how can you be sure you found the edge.
 
  • #4
Chronos said:
Much bigger than 22 GY
The last paper by N. Cornish: http://arxiv.org/abs/astro-ph/0310233 rules out topologies smaler than 24 Gpc in diameter, i.e. 40 GLy in radius.
 
  • #5
Chronos - If the universe is expanding, i.e. relative to some standard metre ruler, then the past spatial separation of non-gravitationally bound objects would be smaller in the past than their present separations. So the universe could be said to have been smaller in the past. To make the statement precise one would have to state a specific region, such as the present observable universe, which was smaller in the past.

gonzo's two objects that are at present 22 G.Lt.yr. apart would have been much closer together when the light from them was first emitted.

The conclusion that we 'cannot see the backs of our own heads' is model dependent and is true for the standard Big Bang model, but there are so many questions today about acceleration, DM, DE, and possible gravitational anomalies such as MOND that it would be prudent to keep an open mind on this one!

Garth
 
  • #6
Thanks Garth, but I that's not the brunt of my question. It seems some posters, while hopefully being good intentioned, have nit picked my poor word choice instead of trying to understand the point of what I am saying.

I am not really interesting in seeing the back of our heads. That's not what I meant.

And getting hung up on the exact numbers I used wasn't the issue either. I will try and avoid specific numbers to avoid at least that problem.

This is my main concern. If we look in one direction and see an object very very far away, and then look in another direction and see another object very very far away in that other direction. To us, it looks like these objects are incredibly far away from each other, much farther than either one is from us even.

However, since what we are seeing is very very long ago, I thought that should mean these objects should actually be much closer together at the point we are looking at them, and so it is strange that we can see them in opposite directions, and I was hoping to understand this.

The reason I mentioned seeing the same object in two directions is an extrapolation of this same idea. If we see these two objects by looking in opposite directions, but if they are far enough away, then it seem they should be close enough to see next to each other in the same direction (or in some arc, or whatever, I hope you get the idea of what I mean). You see? I am thinking that if they are close enough in the past to see in the same direction closer together, and that led me to wonder if you couldn't see the same object in two directions then if you looked far enough away, because the farthe away you look, the closer everything should be to each other and at some point you should be able to see these objects in the same small arc or direction.

I guess it's a sort of mapping problem in a sense. as we look farther away, we seem to be looking at the surface of an ever larger sphere. But since we are looking back in time, we are looking at the contents of an ever smaller sphere (and don't get hung up on the fact that it really isn't a sphere and it's not expanding through anything and miss my point, I'm tyring to ask this without putting a million words on it and get the essence of my question across). So we are mapping a shriking space onto an expanding space in some sense, so unless objects take up more space, I'm confused on how that works out. Assuming I've managed to convey the essence of my confusion.

Thanks.
 
  • #7
Actually I have already answered your question and it is related to 'seeing the back of your own head'! Think of the globe of the Earth. Your antipodes can be reached by going in any direction.

Garth
 
  • #8
I'm confused, I don't understand how this answers my question. Could you please elaborate? Thank you.
 
  • #9
If great circles going through your position on the Earth's globe represent the null-geodesics of light rays coming to us from the depths of space, then, at the opposite side of the world, places close together, but on opposite sides of the antipodean point, may be 'seen' far apart, one great cirlce going 'eastwards' and the other 'westwards'. Its only a model, and the universe may not be space-like spherical in shape, but it is an illustration.

Garth
 
  • #10
I understand that analogy, but that is for something else and doesn't seem pertinent to my question.

Maybe I'm not being clear. I'll try and say it again. As we look at objects farther away from us, we appear to be looking at the surface of ever larger spheres, with us at the center? Is that clear?

However, as I understand it, since all of the stuff we are looking at on the surface of that sphere was much closer together since it also back in time, we should be seeing smaller and smaller regions of space instead of larger and larger ones.

Back in time, things were closer together, but the farther out we look the farther apart they are. How is this resolved?
 
  • #11
try not to think too hard about it gonzo. It's pretty much as simple as a bag of marbles exploding. Would you ask the same mind bending questions about the marbles? no. A marble looks like a marble from all the other marbles. It's that simple.
Marbles close together. Bang. Marbles far apart.

We see distant objects the way they were millions of years ago. Yes, they were closer to other objects, but still not too close. To see the objects while they were still all stuck together in the original 'universe atom' we'd need to be a lot further away from them. e.g. consider a very light particle, which has been traveling at very nearly the speed of light away from the universe since the begining. From this particle, looking in the oposite direction to which it is traveling, you could see the universe in the very compacted state it was in at a time just after the big bang.

Yes, we do see galaxys to be closer to us and each other than they actually are.

As for the looking in 2 directions and seeing the same thing, this is old crazy speculation from when the then new GR model first suggested the universe is closed in some respect, but in reality, it's never been observed.

As for observing the big bang, yes, it's been observed, just the way you'd expect. A very redshifted faint old radiation, observed in all directions.
 
  • #12
gonzo said:
However, as I understand it, since all of the stuff we are looking at on the surface of that sphere was much closer together since it also back in time, we should be seeing smaller and smaller regions of space instead of larger and larger ones.
I will try to give an explanation but I am not sure whether it is correct. Consider the line element of the Robertson-Walker metric at scale factor ae (redshift ze) for only one angular variable:

[tex]ds = a_e r d\theta[/tex]

This can be written in terms of the current scale factor today a0:

[tex]ds = \frac{a_0 r}{1+z_e} d\theta[/tex]

Thus, the angular element for a given line element at redshift ze can be written:

[tex]d\theta = \frac{1+z_e}{a_0 r} ds[/tex]

Which is a function of r (a distance) and z (the redshift). When one approaches the particle horizon z goes to infinity very fast and r tends to a finite value (that of the radius of the observable universe). The angular element will increase.

So in my humble opinion you are right in your assumption. However, the redshifts at which this phenomenon may be visible are surely behind our observational limits. Note that behind z > 1000 the universe gets opaque to electromagnetic radiation.
 
  • #13
gonzo said:
I understand that analogy, but that is for something else and doesn't seem pertinent to my question.

Maybe I'm not being clear. I'll try and say it again. As we look at objects farther away from us, we appear to be looking at the surface of ever-larger spheres, with us at the center? Is that clear?

However, as I understand it, since all of the stuff we are looking at on the surface of that sphere was much closer together since it also back in time, we should be seeing smaller and smaller regions of space instead of larger and larger ones.

Back in time, things were closer together, but the farther out we look the farther apart they are. How is this resolved?
Yes I understand what you are saying.

There are two effects to think of, and don't follow meemoe_uk's advice
try not to think too hard about it
If we are not supposed to think hard why on Earth did God give us brains?!

The first effect is caused by the curvature of space. If the universe is spatially spherical then a good 2D analogy is the surface of the Earth's globe. Consider the case where your 'space' is actually the surface of a wooden sphere. Start at the North Pole and paint the floor in ever increasing circles with yourself on the outside of a growing circle of wet paint centred on the North Pole. As you go on painting the area you cover will grow larger and so does the circumference on which you apply the paint. After a while you reach the equator, now something strange happens. The more you paint the smaller the circumference gets, and you eventually realize that, rather than being on the outside of a circle of wet paint, you find yourself on the inside of an ever decreasing area of unpainted wood surrounded by wet paint, until eventually you have painted yourself into one tiny spot at the South Pole.

The second effect is caused by the fact that as we look out we look back to a smaller universe, so the expansion of the universe itself produces a lensing effect in which two 'rays' going off in different directions first diverge away from each other but eventually converge again as they traverse an ever younger and ever smaller universe.

There may be regions of our universe that we can never see, for they are outside this small area in the early universe that we can see, the boundary between these two parts, the observable and the at-present-unobservable universe is our particle boundary.


Garth
 
Last edited:
  • #14
Garth said:
The second effect is caused by the fact that as we look out we look back to a smaller universe, so the expansion of the universe itself produces a lensing effect in which two 'rays' going off in different directions first diverge away from each other but eventually converge again as they traverse an ever younger and ever smaller universe.
Garth

I think this may be the missing piece of the puzzle for me. Thanks.
 
  • #15
Actually, something just occurred to me. Doesn't this mean that far away objects are really much smaller than they appear?
 
  • #16
One other thing's been bugging me too. At first I assumed with the sphere analogy that there wasn't any real world equivalent to the equator, and that that was just a problem of the analogy. But I realized there actually HAS to be, if we assume the lensing effect.

I know that for close objects my visual arc gets wider as I look out farther away, and then with this lensing issue, we assume that it gets narrower again very far away. That must mean there is a "turning" point out there somewhere, which becomes the equivlanet of the equator in the sphere analogy.

So, how far out is this point, and what determines it?

Thanks.
 
  • #17
If you apply 4 dimensional thinking, it all falls into place. Here and now observations are trapped in time bubbles when viewing distant objects. While what you are saying is true with respect to simultaneity, it is an illusion with respect to GR. Since time moves at a finite rate [speed of light], you see the past no matter what direction you look. And it is causally connected to the present. If the past is wrapped around itself, you would see 'circles in the sky'. But we don't. That suggests our universe is observationally infinite. But reality is not the same as observation. As many theorists have suggested, it may well be impossible to see the 'back of our heads' or mirror versions of this universe. I routinely discard such theories because they are impossible to affirm.
 
Last edited:
  • #18
After thought, observe a distant supernova. Immediately initiate a search for another on the 'opposite' side of the universe. There should be a time delay [one will occur before the other because of the relative distance from our reference frame]. Supernova are so rare it should be a no-brainer. You would have at least a week to find its mirror image and collect your Nobel. I am almost serious about this. It would be a huge discovery, or non-discovery. Thanks for proposing a way to test this theory. Your idea is truly brilliant.
 
Last edited:
  • #19
That doesn't work because of the particle horizon, or whatever it is called, as I understand it.

Adn I don't really understand how what you said answers my question.
 
  • #20


“DARK BACKWARD AND ABYSM”
-- James Ph. Kotsybar

We can see fourteen billion light years out.
For those still here a billion years from now,
more light will have traveled to them, no doubt,
the billion light years that space will allow.
Distant descendants may not see much more,
however, than what we can now observe.
Despite larger radius to explore,
their view won’t be a sight they can conserve,
because space itself goes faster than light,
as it expands relatively through time.
This perspective's loss is ever the plight
throughout our universe's known lifetime.
We daily lose ability to see
the things furthest back in our history.
 
  • #21


the universe has no specific size...
 
  • #22


This is a really easy question.

From our vantage point we are seeing light emitted 11 billion years ago from one direction and 11 billion years from another direction. So from our vantage point, wherever we happen to be situated in the universe as a whole, they appear to be 11 billion light years away from us.

However because the universe in expanding, by the time the light reaches us the stars (if they are still burning) will be further apart from us due to living in an expanding universe. They won't be 22 million light years apart because the universe will have expanded so much during that time.

I'm sure it would actually be possible to determine how far apart they actually are by measuring the red shift of the light, it certainly wouldn't be 22 billion light years though.
 

FAQ: Question about the edge of the universe

1. What is the edge of the universe?

The edge of the universe refers to the outermost boundary of the observable universe, which is the portion of the universe that we can detect and study. It is not a literal physical edge, but rather a limit to our ability to observe and understand the universe.

2. Is the universe infinite or does it have an edge?

The current scientific consensus is that the universe is most likely infinite in size. This means that it does not have a physical edge or boundary. However, our observable universe is limited by the speed of light and the age of the universe, so we cannot see beyond a certain distance.

3. What is beyond the edge of the universe?

As mentioned before, the universe is most likely infinite in size, so there is no "beyond" the edge of the universe. However, there could be other universes or dimensions that exist beyond our observable universe, but we currently have no way of knowing for sure.

4. How can we know what is at the edge of the universe?

Since the universe is expanding and the speed of light is limited, we can only observe a portion of the universe. Scientists use various methods, such as measuring the cosmic microwave background radiation, to study the edge of the observable universe and make predictions about what could be beyond it.

5. Will we ever be able to reach the edge of the universe?

Based on our current understanding of physics and the limitations of the speed of light, it is highly unlikely that we will ever be able to physically reach the edge of the universe. However, technology and scientific advancements may one day allow us to gather more information about the universe and potentially expand our knowledge beyond our current limitations.

Similar threads

Replies
12
Views
1K
Replies
25
Views
3K
Replies
6
Views
2K
Replies
7
Views
1K
Replies
24
Views
2K
Replies
13
Views
2K
Replies
3
Views
1K
Replies
2
Views
1K
Back
Top