Discovering the Capricious Constants: Uncovering the Non-Fundamental Truths

  • Thread starter Loren Booda
  • Start date
  • Tags
    Constants
In summary, I think it is difficult to say for certain what a fundamental constant would be, and that it would depend on the specifics of the situation.

Which of the following will prove not to be a fundamental constant?

  • c

    Votes: 2 28.6%
  • e

    Votes: 2 28.6%
  • G

    Votes: 4 57.1%
  • h

    Votes: 1 14.3%
  • They are all fundamental and constant

    Votes: 1 14.3%

  • Total voters
    7
  • #1
Loren Booda
3,125
4
Which of the following will prove not to be a fundamental constant?
 
Physics news on Phys.org
  • #2
Define "fundamental constant". e is simply a specific number. It is a "fundamental constant" in the same sense that 1, -5, or 37.324323 are. The others are all physics constants.
 
  • #3
HallsofIvy said:
Define "fundamental constant". e is simply a specific number. It is a "fundamental constant" in the same sense that 1, -5, or 37.324323 are. The others are all physics constants.

I expect he means the charge on an electron.
 
  • #4
Charge on an electron (or quark) it is.
 
  • #5
Picked the universal gravitational constant, since satellites exiting the solar system have already raised some potential discrepancies that need to be explained (just a problem measuring the satellite's acceleration? or a 'true' discrepancy in acceleration?)

In general, I think the idea of fundamental constants that never change seems like a rather elusive idea. Even for 'c', speed of light, special conditions have to be set (only in a vacuum that doesn't actually exist) in order for the speed of light to remain constant. To be a 'fundamental constant', there should at least exist some unchanging value, even if our measurements of it undergo revision as our ability to measure it improve. Using that frame of reference, I think all of the above probably have some fundamental value, even if our measurement of it constantly undergoes revision.
 
  • #6
BobG said:
In general, I think the idea of fundamental constants that never change seems like a rather elusive idea. Even for 'c', speed of light, special conditions have to be set (only in a vacuum that doesn't actually exist) in order for the speed of light to remain constant.

When you say that vacuum "doesn't actually exist" are you referring to the difficulties of isolating a bit of space with no matter or force particles in it which could in principle be removed, or are you referring to the fact the space can never really be "empty" due to quantum effects?

Doesn't specification of a fundamental constant require that the properties of the "fabric" of spacetime be taken into account as part of the definition? Or to put it another way, is the idea of a fundamental "constant" as such essentially a classical idea as, in a quantum universe, the quantitatively stable values are averages?

Putting aside quantum issues (if this is possible without rendering the question meaningless), isn't a "vacuum" the stage for reactions between particles? So wouldn't the value of fundamental constants "in a vacuum" be in play in measurements taken for individual interactions such as those recorded in accelerators? (This of course assumes that the degree of transparency afforded by the detector can be determined.)

How are any of these considerations affected by the units of the "fundamental constant" in question? Would the speed of light, which superficially appears to have a more direct relation to the structure of spacetime be more affected by the above considerations than charge, which appears independent? Would the fine structure constant (being unitless) be a somehow "more fundamental" constant than the others mentioned?

My context for these questions is curiosity not challenge. I have no real sense of what the current consensus might be on these issues.
 

FAQ: Discovering the Capricious Constants: Uncovering the Non-Fundamental Truths

What is the main focus of your research on "Discovering the Capricious Constants"?

The main focus of our research is to uncover the non-fundamental truths that govern our universe through the study of capricious constants. These are physical constants that appear to vary or change over time or space, challenging our understanding of the laws of physics.

How did you come up with the idea for this research topic?

Our team of scientists noticed discrepancies in the values of certain physical constants while conducting experiments. This sparked our curiosity and led us to investigate further, ultimately leading to the idea of studying capricious constants.

Can you give an example of a capricious constant?

One example is the fine-structure constant, which describes the strength of the electromagnetic interaction between charged particles. Its value has been observed to vary slightly in different regions of the universe, challenging the notion of a constant value for this fundamental force.

What implications does your research have for our understanding of the universe?

Our research has the potential to revolutionize our understanding of the universe by challenging the notion of fundamental constants and opening up new avenues for exploration in the field of physics. It could also lead to advancements in technology and our ability to manipulate these constants.

What are the next steps for your research on "Discovering the Capricious Constants"?

We plan to continue our investigations and conduct further experiments to gather more data on capricious constants and their behavior. We also hope to collaborate with other scientists and share our findings to further advance our understanding of these non-fundamental truths.

Back
Top