- #1
Ethereal
In 1593, Adriaan van Roomen posed the following problem to "all the mathematicians of the known world": Find the roots of:
x^45 - 45x^43 + 945x^41 - 12300x^39 + 111150x^37 - 740459x^35 + 3764565x^33 - 14945040x^31 + 469557800x^29 - 117679100x^27 + 236030652x^25 - 378658800x^23 + 483841800x^21 - 488484125x^19 + 384942375x^17 - 232676280x^15 + 105306075x^13 - 34512074x^11 + 7811375x^9 - 1138500x^7 + 95634x^5 - 3795x^3 +45x = C
where C is a constant.
Viete solved this in 1595. How was this done?
x^45 - 45x^43 + 945x^41 - 12300x^39 + 111150x^37 - 740459x^35 + 3764565x^33 - 14945040x^31 + 469557800x^29 - 117679100x^27 + 236030652x^25 - 378658800x^23 + 483841800x^21 - 488484125x^19 + 384942375x^17 - 232676280x^15 + 105306075x^13 - 34512074x^11 + 7811375x^9 - 1138500x^7 + 95634x^5 - 3795x^3 +45x = C
where C is a constant.
Viete solved this in 1595. How was this done?