Appendix A

Oscillator Equation and
Absorption Rate

The Newton equation of motion for a particle of mass m and charge e,
acted upon by an elastic restoring force —mw?2z and an external electric

field E,(1), is
i 21l LIl & €
z4+wiz=—F,(t)+ —Egrr(t). (A.1)

For simplicity, and to follow Planck, Einstein, and Hopf, we assume the
particle is constrained to one-dimensional motion.

The field Egrp(t) in (A.1) is the field of radiation reaction, i.e., the
electric field produced by the charged particle at the position of the particle.
In other words, it is the electric field that the charge exerts on itself. For
our purposes here a simplified derivation and expression for this field will
suffice. A more detailed derivation is given in Appendix D.

We recall first the expression (1.8) for the rate at which an accelerating
charge radiates electromagnetic energy. The energy radiated in the time
interval from ¢; to 5 is

Wemlta,tr) = 25 [ s(t)%dt = o fs)ice) |2 il t)z(t)dt
etz ) = 555 [ 0= S5EQH0 - [ F @2,

(A.2)
where the second equality follows from an integration by parts. We assume
the motion of the charge is periodic and choose t5 — ¢, to be an integral
number of periods, in which case

262 ta

WeMm(t2,t1) = ~33
t)

¥ (t)3(t)dt. (A.3)
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The change in energy of the charge, —WEgy, is attributed to the force
eERp(t) of radiation reaction:
% 2 ' ta
~Womltat) = 555 [ ()3(0)dt = / eEpn(D)i(t)dt  (A.4)
t
or
2e :
Ern(t) = 55 # (1). (A.5)
Although this expression for the radlatnon reaction field was derived under
the assumption of periodic motion, it actually holds more generally, as
discussed in Chapter 5 and Appendix D. When it i1s used in (A.1), we
obtain the equation (1.41) used by Planck, Einstein and Stern, and others.
For the case of a monochromatic applied field E, () = E,,, cos(wt +46,,),
equation (1.41) has the solution

Ewe-.'(m-{-o‘,)
w? — w2 + iyw3

2(t) = —%Re [

so that the rate (force times velocity) at which the oscillator absorbs energy
from the field is found after some simple algebra to be

e’ ywiE,

2m (w? — w2)? + y2u8

(A.6)

Wa = ez(t)E,(t) —

where we have taken an average over the oscillations of the field, replacing
cos?(wt + 6,,) by 1/2 and sin(wt + 6,,) cos(wt + 6,,) by 0.

Now suppose the applied field has a broad distribution of frequencies
with energy density in the interval [w,w + dw] given by p(w)dw = E? /8.
In this case (A.7) is replaced by

4re? [ wip(w)dw
=T, e A9

The time v = 2e2/3mc® = 6.3 x 10~ 2*sec is so short that, for natural
oscillation frequencies w, of interest, yw, << 1. Furthermore p(w) may be
assumed to be flat compared with the sharply peaked function

w? w?

= 2 A9
(W? —w2)? + 7208 4wi(w —w,)? + 72w (4.9)

in the integrand of (A.8), so that

. mely w2 dw mely L2 27
Wa = (wo)/ (w—wo)?+7 w4/4 m ob(we) (‘7“’3)
72 re? me?
= 2 ) = T () — 2 plwo). (A.10)
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In the last step we have replaced p(v,) by p(v,)/3, where now the spectral
energy density is defined by p(w)dw = (E2, + E}, + E? ) /87 = 3E2, /8~
for (isotropic and unpolarized) thermal radiation. We have thus arrived at
equation (1.7) for the energy absorption rate.

By replacing e2/m by e%f/m in equation (1.7), where f is the oscilla-
tor strength of an atomic transition of frequency w,, we obtain the energy
absorption rate given by quantum mechanics up to second order in pertur-
bation theory.!

1See, for instance, M. Cray, M.-L. Shih, and P. W. Milonni, Am. J. Phys. 50, 1016
(1982).






