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It is equivalent to the following relation:

µ(r × ṙ) = − r
|r| + a, a = const.

Consequently,
(a, r) = |r|. (1.3)

This is the equation of a cone of revolution whose symmetry axis is parallel
to the vector a. We demonstrate that the charged particle moves along the
geodesics on this cone. Indeed, r and ṙ are tangent to the cone (1.3). Conse-
quently, the acceleration vector is orthogonal to this cone. Since the speed of
motion is constant, by Huygens’ formula the normal to the trajectory coin-
cides with the normal to the cone. Therefore the trajectories are geodesics.

This result of Poincaré explains the phenomenon of cathode rays being
drawn in by a magnetic pole discovered in 1895 by Birkeland [501].

f) We consider in addition the problem of external ballistics: a material
point (r, m) is moving along a curvilinear orbit near the surface of the Earth
experiencing the air resistance. We assume that the resistance force F has
opposite direction to the velocity and its magnitude can be represented in the
form

|F| = mgϕ(v),

where ϕ is a monotonically increasing function such that ϕ(0) = 0 and ϕ(v) →
+∞ as v → +∞.

Fig. 1.3. Ballistic trajectory

Since at every moment of time the vectors of the velocity of the point, its
weight, and the resistance force lie in the same vertical plane, the trajectory
of the point is a planar curve. In the plane of the orbit we introduce Cartesian
coordinates x, y such that the y-axis is directed vertically upwards. Let α be
the angle between the velocity of the point v and the horizon (Fig. 1.3). The
first of equations (1.2) gives the relation

v̇ = −g
[
sin α+ ϕ(v)

]
. (1.4)
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We now make use of the second equation in (1.2). First of all we observe
that ρ = −ds/dα. The sign “−” shows that the angle α decreases as s in-
creases. Taking the projection of the gravitational force onto the normal we
arrive at the second relation

vα̇ = −g cos α. (1.5)

The phase portrait of the closed system of differential equations (1.4)
and (1.5) is depicted in Fig. 1.4. All the phase trajectories approach arbi-
trarily closely the point α = −π/2, v = v0, where v0 is the unique positive
root of the equation ϕ(v) = 1. This point corresponds to the vertical fall of
the body with constant velocity (as in example d).
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Fig. 1.4. The phase portrait of the ballistic problem

We demonstrate that the trajectory has a vertical asymptote when contin-
ued infinitely (as depicted in Fig. 1.3). Indeed, the x-coordinate is determined
by the formula

x(t) =

t∫

t0

v cos α dt.

We need to show that the corresponding improper integral (when t = ∞)
converges. For that we pass to a new integration variable α and use (1.5):

x =
1
g

α0∫

−π/2

v2 dα.

Since the speed is bounded, this integral has a finite value.
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For some laws of resistance, the system of equations (1.4)–(1.5) can be
solved explicitly. One of such laws was found already by Legendre:

ϕ(v) = cvγ , c, γ = const > 0.

The substitution u = v−γ reduces this problem to integrating the single linear
differential equation

du

dα
+ γu tan α+ γc cos −1α = 0.

This equation can be easily solved by the method of variation of parameters.
One can find references to other results devoted to the exact integration

of equations (1.4)–(1.5), for example, in the book [5].
The principle of determinacy holds also in relativistic mechanics. The dif-

ference between classical Newtonian mechanics and relativistic mechanics is
in Galileo’s principle of relativity.

1.1.3 Principle of Relativity

The direct product E3 × R{t} (space–time) has the natural structure of an
affine space. The Galilean group is by definition the group of all affine trans-
formations of E3 × R that preserve time intervals and are isometries of the
space E3 for any fixed t ∈ R. Thus, if g: (s, t) → (s′, t′) is a Galilean trans-
formation, then

1) tα − tβ = t′α − t′β ,
2) if tα = tβ , then |sα − sβ | = |s′α − s′β |.
The Galilean group obviously acts on R

3{r}×R{t}. We give three examples
of Galilean transformations of this space. First, uniform motion with constant
velocity v:

g1(r, t) = (r + vt, t).

Next, translation of the origin in space–time:

g2(r, t) = (r + x, t+ α).

Finally, rotation of the coordinate axes:

g3(r, t) = (G r, t),

where G : R
3 → R

3 is an orthogonal transformation.

Proposition 1.1. Every Galilean transformation g : R
3 × R → R

3 × R can
be uniquely represented as a composition g1g2g3.


