40. Quantization of Gravitational Field:
Introduction

We have been discussing the general theory of relativity. Perhaps the three
fundamental principles of this theory are the following; i) The events of space-
time (all events, past, present, and future) are assembled into a four-dimensional
manifold. The description of physics is in terms of fields on this manifold. ii)
There is a metric tensor field g.p, on this manifold. The metric simultaneously
describes the geometry (results of space and time measurements) of space-time
and the effect of gravitation. iii) Matter in space-time produces a certain tensor
field which causes the metric of space-time to exhibit curvature. Omne of the
central features of the general theory of relativity (a feature we have, perhaps,
not stressed strongly enough) is that the theory claims to incorporate within its
structure all of physics. Where there’s “physics”, there’s stress-energy, and hence
there’s curvature of space-time. The full apparatus of general relativity must, at
least in principle (though almost never in practice!) be brought into play in the
discussion of any physical phenomenon. General relativity claims a universality
over other areas of physics. (Note the word “claims”. The entire theory could, of
course, differ substantially from the way Nature chooses to behave.)

There exists at least one other theory of physics with a similar claim to uni-
versality: quantum theory. In my opinion, the fundamental principles of quantum
theory are: i) The states of a system are described in terms of a Hilbert space
(more specifically, by rays in a Hilbert space), and ii) the attributes (properties
of, measurements on, etc.) of the system are described in terms operators on that
Hilbert space. Perhaps quantum theory can be viewed as the insistence that every
theory of physics be formulated according to the principles above.

That there is a problem here should now be clear. The general theory of
relativity is not formulated in the terms demanded by quantum theory. One seeks,
therefore, a modification of the theory to obtain consistency with the principles of
quantum theory: one seeks to quantize the general theory of relativity. This new
theory should, presumably, not go any more strongly than necessary against the
fundamental principles of general relativity. The problem, then, is to write down a
theory which is both “quantum-theory-looking” and “general-relativity-looking”.
This problem, to which a great deal of effort and many clever ideas have been
directed, remains unsolved. We shall, in the next few sections, discuss a few of
the approaches to this problem. It should be emphasized that whether or not a
collection of sentences and equations represents a “solution” to this problem is,
for the most part, an aesthetic question.

What features might one expect to appear in a quantum theory of gravitation?
It is common that concepts in a classical theory which are “sharp” become “fuzzed
out” on quantization. For example, for a particle approaching a potential barrier,
classically, the particle either reflects or is transmitted, while, in quantum theory,
there is merely a distribution in probabilities for various outcomes. The primary
candidate for something to be fuzzed out on quantization of general relativity
is the point events of space-time. One might expect that these events will lost
their significance — i.e., will reappear only in the classical limit of the quantum
theory of gravitation. This expectation is suggested, for example, by the following
remark. Suppose we build a probe of some sort which makes measurements in
a very small region of space-time (or, in the limit, at a single event of space-
time). Then our probe must be at least as small as the region over which it
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118 40. QUANTIZATION OF GRAVITATIONAL FIELD

makes measurements. But the uncertainty principle in quantum theory suggests
that very small instruments must contain particles of high momentum — hence,
high energy. But, if our probe is to have a large stress-energy, then by Einstein’s
equation, it must be responsible for large curvatures of space-time. In other words,
a significant distortion of space-time in the region being measured will result
from introducing our probe. Thus, it appears that point events will lose their
operational significance under quantization. But it usually happens in physics
that, when a concept looses operational significance, that loss is reflected in the
mathematical formulation of the theory.

A second concept from general relativity one might expect to be “fuzzed out”
by quantization is the metric. There will not, presumably, be one specific metric of
space-time, but some probability distribution of possible metrics. This “smearing
out of the metric” might be expected to have significant physical consequences.
For example, the divergences which arise in quantum field theory come about,
at least in part, because integrals in momentum space extend to arbitrary large
momenta. One uses “cutoffs” in momentum to obtain finite results. If the metric
were “smeared out”, one might expect this to result in natural cutoffs on such
integrals. One might expect the divergence difficulties associated with quantum
field theories to, at least, become less severe in the presence of a quantized metric.
Furthermore, the singularities we have seen in general relativity might also be
expected to disappear. The smoothing out from quantum theory could result
in a smoothing over of these singularities. (Analogous phenomenon in atomic
physics: Classically, an electron orbiting a point nucleus radiates, spirals inward,
and eventually hits the nucleus. In quantum theory, this singularity disappears.)

The approaches to quantization of general relativity are normally based on
analogies with quantum theories we understand: quantum electrodynamics, Schrodinger
quantum mechanics for a particle, etc.



41. Linearized Approach to Quan-
tization

Consider the linearized Einstein equations, (166) and (167). We have seen
in Sect. 39 that this approach to general relativity results in a set of equations
on a field 7, in flat space which bears a very close resemblance to Maxwell’s
equations of electrodynamics. The vector potential A, for the electromagnetic
field is replaced by the “potential for the gravitational field”, v,;. These are both
tensor fields in flat space-time. In some sense, the linearized Einstein equations
represent an approximation to the full equations of general relativity.

The approach to quantization to be discusses in this section is based on the
following idea. One regards 7, as just another classical field (on the same footing
with, say, the electromagnetic vector potential). One attempts to use the conven-
tional techniques of quantum field theory on this v,;. That is to say, one extends
the analogy between electrodynamics and linearized general relativity to a quan-
tization program for the latter. Using quantum electrodynamics as a model, one
attempts to construct a “quantum gravidynamics”.

In this section, we shall first summarize, in very broad and vague terms, the
setting of quantum electrodynamics. We then remark that similar techniques
could be applied to the linearized Einstein equation. Finally, we make some
general comments on the resulting “quantum theory of gravitation”.

There are two stages leading to quantum electrodynamics. In the first, one
obtains the theory for free photons (the quantized version of the classical theory
described by V"V,,A* = 0, V,A* = 0). Next, one introduces interactions.
For the free case, one proceeds, roughly, as follows. Consider the real (infinite-
dimensional) vector space of (asymptotically well-behaved) solutions of Maxwell’s
equations with J* = 0. One introduces on this vector space a suitable norm and a
suitable complex structure. It thus becomes a Hilbert space H. This H represents
the Hilbert space of one-photon states of the (source-free) Maxwell field. Next,
one extends this description to states with many photons.

F=H'+H'+H*+H>+--- (168)

where the superscripts denote “powers” of H. (More precisely, H° is the com-
plexes, H! = H, H? is the tensor products of H with itself, H> the tensor product
of H with H?, etc. The sums are direct sums of Hilbert spaces.) This F, the Fock
space, represents the states of the system (without sources). An element of H”
represents a state with n photons (and an element of HY a vacuum (zero photon)
state). Thus, the general element of F' consists of a linear combination of states
with various numbers of photons. There are defined operators on F' representing
such things as “numbers of photons”, “energy-momentum?”, etc. This, the theory
of free (non-interacting) photons, is not very interesting, because nothing much
happens.

One now introduces interactions. These are described by certain operators (on
F', the Fock space for electrodynamics, and also on the Fock spaces for the other
particles of interest, e.g., electrons). These interaction operators allow for the
possibility of translations in which numbers of photons change (while, of course,
numbers of other types of particles can also change). Thus, with the introduction
of an interaction, one has the possibility of particle reactions’ taking place. In
this way, e.g., electron-photon scattering cross sections can be calculated, and
comparison made with experiment.
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Essentially the same program goes through, with little change, for the lin-
earized Einstein equation. One introduces the Fock space of free gravitation
states. For the interaction, the gravitons couple to the stress-energy of particles
rather than (in the electromagnetic case) the charge. One calculates scattering
processes, etc. involving gravitons. The proposal, then, is that one regard the
result as representing a “quantization of general relativity”.

There is certainty a sense in which the program above departs from the spirit
of general relativity. One could, of course, criticize it on the grounds that it deals
only with the linearized equations — not the full Einstein equation. This, however,
is a deficiency only of our brief description — not of the program itself. One could
just as well consider also the higher order terms in the perturbation expansion
(i.e., in Sect. 39, one could take d?/d\?, d®/d\3, etc., at A = 0, of Einstein’s
equation). These corrections would represent further possible interactions — they
would be gravitation-gravitation interactions. Thus, one would regard the nonlin-
earity of Einstein’s equation as allowing for the possibility of “gravitational field
produced by gravitational field itself”. Quantum-mechanically, gravitons create
gravitons. The more terms included as interactions from the perturbation expan-
sion, presumably, the closer the resulting field theory would approximate general
relativity.

In my view, more serious objections are possible. A physical theory consists,
of course, of more than merely the equations of that theory. In particular, general
relativity consists of more than Einstein’s equation. There is in addition to the
equations, an overlay of concepts, attitudes, prejudices, etc. The concepts play
at least as great a role in what the theory “is” as the equations. In general
relativity, for example, there is the notion of assembling all possible events into
a manifold. There is the notion of the metric on this manifold — an object with
direct physical significance as giving the result of space and time measurements,
and more indirect physical significance concerning gravitation. In short, general
relativity is an integral part of what might be called the “space-time view of
physics”.

Where are these concepts from general relativity in the linearized version of
quantized gravitation? One sees, at least, the rudiments of Einstein’s equation,
but, in my opinion, not the sense of the general theory of relativity. This is not to
say, of course, that the linearized program is wrong. What it does seem to imply
is that, if Nature behaves as described by this approach, then the general theory
of relativity has been an unfortunate — and expensive in terms of time and effort
— detour.



42. Canonical Approach to Quanti-
zation

As an alternative to the linearized approach, we now discuss the canonical
approach to quantization. Perhaps this approach displays a greater respect for
the integrity of general relativity than the linearized approach (and, for this reason,
it is a good example of an alternative to the linearized). On the other hand, the
canonical approach is, it seems to me, a bit on the simple-minded, naive side.
It takes, at its model, elementary Schrodinger quantization of a particle. But
quantum theory has advanced considerably since its beginnings. We begin with
a brief review of Schréodinger quantization. We then attempt to carry over, as
directly as possible, these ideas to general relativity. The result is an imprecise,
but suggestive, program for obtaining a quantum theory of gravitation.

Consider a single particle. We can describe the particle by its position = and
momentum p. Thus, as the particle moves around in time, the motion is described
by z(t) and p(¢). The dynamics of the particle are described by a pair of differential
equations which express & and p as functions of  and p. Thus, if one specifies the
values of x and p at some initial time, then the equations of motion determine x
and p for all future times. The initial data for the particle consist of the values of
z and p. It usually turns out that the equations of motion for the particle can be
cast into the following form. One can find a certain function H(x,p) of x and p
such that

.0 ) 0

If the equations of motion can be cast into the form (169), they are said to be in
Hamiltonian form. The function H(p, q) is called the Hamiltonian of the system.

The Schrédinger quantization scheme is applicable to classical system whose
equations of motion have been placed in Hamiltonian form. The initial data,
x,p, are replaced by a single, complex-valued wave function, v (z). Instead of
x(t), p(t), we have 9(x,t). Thus, the motion of the system in time is described via
time-dependence in ¢. The Hamiltonian equations of motion, (169) are replaced
by

ho h o
2l =H (2~ 170
i ot (m z’@x) 4 (170)
where H (z, %8%) means “replace p in H(z,p) by the differential operator %a%”

(a rather vague prescription). Thus, given ¥(x,to) for some value of tg, (170)
determines v (z,t) for all t.

The Hilbert space for this quantum theory consists of the (complex) vector
space of all (sufficiently well-behaved) solutions of (170). One then introduces
position, momentum, energy operators, etc.

The idea is, firstly, to try to express the equations of general relativity in
“Hamiltonian form”. Then, one applies the Schrédinger prescription to obtain a
quantum theory. Recall the initial-value formulation of general relativity. The
initial data consist of the induced metric hy, and the extrinsic curvature II%0.
These evolve with time according to the equations

hab - 2S0Hab
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where ¢ is the evolution function. One first task is to re-express (171) in Hamil-
tonian form.

Set p® = I1%® — I1h%. This p? is, it turns out, more closely analogous to the
p for a particle than I1?°. Rewriting (171) in terms of p?, we obtain

hat = 2(p — 3phar)

p® = —DA Db + R — 2pp° T (172)
+ gsopp“b — 20 P P + isﬁth“b

We wish to express these equations in Hamiltonian form. This is in fact possible:

choose for the Hamiltonian

H=- / @ (Z —p""pmn + %pQ) av (173)
S

where the integral extends over the entire 3-manifold S. (We ignore questions of

convergence of integrals. We shall also allow ourselves to throw away surface terms

at will. Such details are unimportant at this stage of theory-building.) Note that

H (hap, p?®) does indeed assign a real number to each choice of data, (hap, p*°) ,

as we would want.

Thus, we have a Hamiltonian formulation of the initial-value formulation of
general relativity (ignoring for the moment, the question of constraints). Note
that we go to the initial-value formulation of general relativity because, in the
one-particle discussion, time played a special role. An analogy could be made to
general relativity only reintroducing a “time” there. That is precisely what the
initial-value formulation accomplishes. In a certain sense we have, already at this
stage, violated the spirit of general relativity.

The next step is to write down the wave function. Instead of the ¢(x) in the
Schrodinger theory, we have ©(hgp), a complex-valued function of the collection
of all positive-definite metrics on the (fixed) three-dimensional manifold S. We
wish to permit evolution, so we write ¥(hqp,t). The Schrédinger equation, (170)
becomes, using (173),

h o h ? acy bd 1 aby cd 62110
_w_(z) <h h —ih h )(Shab(Sth—%w (174)

where, 0/0hy, refers (rather imprecisely) to functional derivatives. Thus, just
carrying over the analogy with Schrodinger quantization, we are led to describe
the “quantum gravitational field” by a complex-valued function, ¥ (h4p,t), on the
space of all positive-definite metrics on S, and on ¢, This function must satisfy
the “gravitational Schrédinger equation”, (174).

We have, up till now, ignored the constraint equations, (134) and (135).
Clearly, one is doing something essentially wrong if he simply ignores certain
equations: we have yet fully incorporated Einstein’s equation into our theory.
First note that, in terms of p®, the constraints take the form

Dyp® =0 (175)
1
A —p"pap + 50 =0 (176)

The question is: How do we “incorporate” these equations into the theory? The
most naive answer is simply to incorporate them as operator equations, using
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the replacement of p,p by (%/i) §/0hap. Let’s try this to see what happens. The
classical constrain (175) would then be replaced by the following condition on our

wave function
D, (h 5 ) =0 (177)

To interpret (177) multiply by an arbitrary vector field v, on S, and integrate by

parts to obtain
0
/ ( M‘/’b) (Diavyy) dV = 0 (178)
s

The validity of (177) is equivalent to the validity of (178) for all v,. But (178) is
easy to interpret. Note that D vy = %fq,hab. Thus, D,y is (up to a factor)
the rate of change of h,, under the diffeomorphism generated by motions along
the integral curves of v,. Therefore (by the chain rule), (178) states that the rate
of change of ¥(hap), as hap changes by the diffeomorphism generated by v, is
zero. To say it another way, (178) requires that, if hy, and h'y, are two metrics

on S which differ by a diffeomorphism on S (i.e., if h*® and b’ “ are isometric),
then ¥(hay) = P(W ap). We can write this symbolically as ¢ = t(geometry).
This conclusion is also reasonable physically. The physics of isometric metrics is
identical (the only difference being the labeling of points of S). Thus, one might
expect 1 to assume the same value on two such metrics. To summarize, the con-
straint equation (175) leads to the quantum condition (177) which, geometrically,
means that ¢ is invariant under replacing hg, by the result of subjecting hgyp, to a
diffeomorphism in S.

We now repeat for (176). It is not hard to guess what the answer will be: (176)
requires that t(hgp,t) be invariant under motions in time. That this is indeed the
case can be seen immediately by noting that the Hamiltonian of our theory, (173),
is just an integral of the constraint (176). Hence, the quantum version of (176)
is precisely the condition that the right side of (174) vanishes. Thus, we require
(0/0t) 1 (hap, t) = 0, i.e., that ¢ in fact be independent of t. (It’s a good thing.
The interpretation of this “t” was always rather obscure, anyway.)

Thus, the constraints, (175) and (176), are related to the section of diffeo-
morphisms in space-time. This is expressed, in the quantum theory, by certain
invariance of the wave function. In fact, we have seen these notions once before:
in the gauge transformations in the linearized theory. These gauge transforma-
tions, again represented the action of diffeomorphisms. Thus, gauge (linearized
version), action of diffeomorphisms (full theory), constraints (initial-value formu-
lation), and invariance of wave function (quantum theory) all are manifestations
of essentially the same thing.

We summarize by stating the formalism of this “theory”. The Hilbert space is
the space of all complex-valued functions v (hgp) on the space of positive-definite
metrics on S, such that ¢ is invariant under the action (on hgp) of diffeomorphisms
on S, and such that

h ? acy bd abycd 521[)
<z> (h h h*h )(;habéth R =0 (179)

We put theory in quotation marks because we have here merely an equation
and a few words. What does it all mean? What is the measurement situation?
What would it be like to live in such a quantum space-time? What is the cor-
respondence limit? To what extent have the principles of quantum theory been
incorporated? To what extent is this theory a “fuzzing out” of general relativity?
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What alternative formulations are available, and how do they compare with this
one?
We are today a good way from satisfactory answers to questions of this sort.
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