- #1
Mad_MechE
- 7
- 0
Hey all,
I finally figured out how to solve the integral:
[tex]\int{dp} = \int{6U\eta(\frac{h-\overline{h}}{h^{3}})}{dx} + C[/tex]
using maple and have it export to MATLAB where:
[tex]h=R+h0-\sqrt{R+x}\sqrt{R-x}[/tex]
[tex]\overline{h}=R+h0-\sqrt{R+\overline{x}}\sqrt{R-\overline{x}}[/tex]
how do i find the boundary conditions to satisfy the constants [tex]\overline{x}[/tex] and [tex]C[/tex]?
my boundary conditions are:
[tex]p = 0 \ @ \ x = R[/tex]
and
[tex]p = 0 \ @ \ x = -\overline{x} \mbox{ where } \overline{x} \mbox{ is where } \frac{dp}{dx} = 0 \mbox{ (maximum pressure)}[/tex]
i don't know if there is an easy way to do it or not! Thanks for your help!
MT
I finally figured out how to solve the integral:
[tex]\int{dp} = \int{6U\eta(\frac{h-\overline{h}}{h^{3}})}{dx} + C[/tex]
using maple and have it export to MATLAB where:
[tex]h=R+h0-\sqrt{R+x}\sqrt{R-x}[/tex]
[tex]\overline{h}=R+h0-\sqrt{R+\overline{x}}\sqrt{R-\overline{x}}[/tex]
how do i find the boundary conditions to satisfy the constants [tex]\overline{x}[/tex] and [tex]C[/tex]?
my boundary conditions are:
[tex]p = 0 \ @ \ x = R[/tex]
and
[tex]p = 0 \ @ \ x = -\overline{x} \mbox{ where } \overline{x} \mbox{ is where } \frac{dp}{dx} = 0 \mbox{ (maximum pressure)}[/tex]
i don't know if there is an easy way to do it or not! Thanks for your help!
MT