- #1
- 1,346
- 8
This was a question posed to me by a homeowner. I don't know very much thermodynamics and hope someone here might have a better understanding.
They have a run of 3/8in copper pipe leading from their water heater to various taps. On cold mornings, it takes a long time, for hot water to flow to the faucets and shower heads. Their idea is to do a rough cost analysis to try and justify the cost of replumbing (making shorter run) from water heater to taps.
I thought a reasonable place to start is to calculate the heat lost along their run of pipe (perhaps in BTU/ft-hr). I found some information about this ref a. The Heat Transfer calculation assumes you know the temperature on both the inside and outside surface of the pipe. I could plug in some numbers for inside temperature; such as 130 deg F at the heater and 120 deg F by the time it reaches the tap (with assumption that the hot water temperature deceases along the run of pipe). I don't have any figure to use for the outside pipe surface temperature.
There is also a parameter k , the thermal conductivity, which is puzzling. In Marks' Standard Handbook for Mechanical Engineering, there is a table of Thermal Conductivity of Metals. For copper between 7 and 700 deg F, [itex]k_{to}= 232[/itex] and [itex] a = 0.032 [/itex]. In caption it states [itex] kt = kt_o - a(t-t_o)[/itex] and k (Btu/hr/ft^2/deg F/ft). The units are different from the k in ref2 which are Btu/hr-ft-deg F. They differ by units of ft^2 in denominator. Now if [itex] kt = kt_o - a(t-t_o)[/itex] , with a little algebra, I find that [itex]k = -a[/itex]. But that doesn't seem right either, because this value of [itex]a = 0.032[/itex] is 4 orders of magnitude from the thermal conductivity (108 Btu/hr-ft-deg F) of stainless steel used in example in ref2.
Perhaps there is an easier approach to this part of the question. One online ref b, with some hand waving, state the heat losses from a couple different diameters of copper hot water pipe, with and w/o insulation. They assume a constant inside pipe temperature of 140 deg F and mention the ambient air temperature is 70 deg F. I don't know if there may be standard tables to obtain this sort of information for the heating and plumbing industry.
Your thoughts or suggestions are appreciated.
They have a run of 3/8in copper pipe leading from their water heater to various taps. On cold mornings, it takes a long time, for hot water to flow to the faucets and shower heads. Their idea is to do a rough cost analysis to try and justify the cost of replumbing (making shorter run) from water heater to taps.
I thought a reasonable place to start is to calculate the heat lost along their run of pipe (perhaps in BTU/ft-hr). I found some information about this ref a. The Heat Transfer calculation assumes you know the temperature on both the inside and outside surface of the pipe. I could plug in some numbers for inside temperature; such as 130 deg F at the heater and 120 deg F by the time it reaches the tap (with assumption that the hot water temperature deceases along the run of pipe). I don't have any figure to use for the outside pipe surface temperature.
There is also a parameter k , the thermal conductivity, which is puzzling. In Marks' Standard Handbook for Mechanical Engineering, there is a table of Thermal Conductivity of Metals. For copper between 7 and 700 deg F, [itex]k_{to}= 232[/itex] and [itex] a = 0.032 [/itex]. In caption it states [itex] kt = kt_o - a(t-t_o)[/itex] and k (Btu/hr/ft^2/deg F/ft). The units are different from the k in ref2 which are Btu/hr-ft-deg F. They differ by units of ft^2 in denominator. Now if [itex] kt = kt_o - a(t-t_o)[/itex] , with a little algebra, I find that [itex]k = -a[/itex]. But that doesn't seem right either, because this value of [itex]a = 0.032[/itex] is 4 orders of magnitude from the thermal conductivity (108 Btu/hr-ft-deg F) of stainless steel used in example in ref2.
Perhaps there is an easier approach to this part of the question. One online ref b, with some hand waving, state the heat losses from a couple different diameters of copper hot water pipe, with and w/o insulation. They assume a constant inside pipe temperature of 140 deg F and mention the ambient air temperature is 70 deg F. I don't know if there may be standard tables to obtain this sort of information for the heating and plumbing industry.
Your thoughts or suggestions are appreciated.
Last edited: