Simple proof, just using the axioms

  • Thread starter Thread starter Ed Quanta
  • Start date Start date
  • Tags Tags
    Axioms Proof
Click For Summary
To prove that (-m)(-n) = mn using basic mathematical axioms, start by recognizing that 0 = 0.0 can be expressed as (1-1)(1-1) = 1 - 1.1 + 1(-1) + (-1)(-1). This leads to the conclusion that 1 = (-1)(-1). The general case follows from the relationship -n = (-1)n, allowing the proof to extend to any integers m and n. Thus, the proof demonstrates that the product of two negative integers results in a positive integer, confirming that (-m)(-n) = mn.
Ed Quanta
Messages
296
Reaction score
0
How could I show that (-m)(-n)= mn? The only thing I am allowed to use to prove this are the 5 basic mathematical axioms which allow for the commutative property and associative propery of the binary operations multiplication and addition;there exists an additive inverse for each integer, 1 is the multiplicative identity, and 0 is the additive identity, while mn=mp implies p=n where m is not equal to 0.
 
Physics news on Phys.org
presumably you know that 0.0=0

so that 0=0.0=(1-1)(1-1)=1-1.1+1.(-1)+(-1)(-1),

=>

1=(-1)(-1)

the general case now follows easily from the fact -n = (-1).n

you could do it more directly 0=m-m=n-n but you'd still have to use -n=(-1).n at some point.
 
Thanks my man
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 26 ·
Replies
26
Views
841
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K