- #1
- 726
- 3
Why "Tri-Bimaximal"?
[tex]\displaymath{U_{PMNS}=\begin{pmatrix}
\sqrt{2/3}& 1/\sqrt{3}& 0\\
-1/\sqrt{6}& 1/\sqrt{3}& 1/\sqrt{2}\\
1/\sqrt{6}& -1/\sqrt{3}& 1/\sqrt{2}\end{pmatrix}}[/tex]
This matrix implies [tex]\theta_{13}=0, \sin \theta_{12} = 1/\sqrt{3}[/tex] (ie. not maximal mixing) and [tex]\theta_{23}=\pi/4[/tex] (ie. maximal mixing)
OK, to my question, WHY do we call this matrix "Tri-Bimaximal"? How does this name come about? Two large mixing angles and the [tex]1/\sqrt{3}[/tex]?
[tex]\displaymath{U_{PMNS}=\begin{pmatrix}
\sqrt{2/3}& 1/\sqrt{3}& 0\\
-1/\sqrt{6}& 1/\sqrt{3}& 1/\sqrt{2}\\
1/\sqrt{6}& -1/\sqrt{3}& 1/\sqrt{2}\end{pmatrix}}[/tex]
This matrix implies [tex]\theta_{13}=0, \sin \theta_{12} = 1/\sqrt{3}[/tex] (ie. not maximal mixing) and [tex]\theta_{23}=\pi/4[/tex] (ie. maximal mixing)
OK, to my question, WHY do we call this matrix "Tri-Bimaximal"? How does this name come about? Two large mixing angles and the [tex]1/\sqrt{3}[/tex]?