- #1
steven_red
- 4
- 0
I'm new here, basically just joined to get some intelligent input on this idea I've had. Was in an altered state of mind while formulating it but it still seems to make sense when sober.Assuming the following:
- As we know, as one approaches the speed of light, one expands i.e. to a stationary observer you would appear stretched out but to someone traveling at the same velocity you would appear normal.
- The same goes for time i.e. a stationary observer would experience 1 hour but if you went at near lightspeed you would experience say 5 minutes but end up at the same point in time as the observer: 1 hour after you left.
- The universe itself is expanding i.e. no matter where you are it looks like everything is moving away from you, like drawing dots on an uninflated balloon then inflating it: all the dots look like they are 'the centre of the universe'. This presumably means we are expanding i.e. the atoms in our bodies etc. are moving apart, but everything is expanding at the same rate so we don't notice it.
I reckon the way we experience time has something to do with the rate of expansion of the universe. See, if you travel at c for what you experience as e.g. 5 minutes, you will have been expanding at a greater rate than a stationary observer. When you stop you will have expanded to the 'size' you would have been had you stayed still for e.g. 1 hour. If an observer waits one hour he will have been expanding at the 'standard rate'. Both of you end up at the same 'point' in the expansion, just the person traveling at c has sort of taken a short cut.
Similarly, this kind of rules out traveling backwards in time, as that would mean going back to a 'smaller' point in the expansion - more 'compressed' i.e. energy would need to be put in which does not exist. This bit is pretty hard to put into words btw so please bear with me. What I mean is obviously traveling forward in time is possible (meaning you experience a shorter length of time than an observer who stays at the 'default' expansion rate) simply by moving at high velocity. Going back in time however would imply experiencing a longer length of time than a stationary observer i.e. the observer 'sees' 1 hour but you 'see' 3 hours or whatever. Or more plainly, an observer experiences 10 years but you experience a lifetime, so when you come back to normal you'd be 80 years old in 2020 instead of 2060 or whatever. Although that isn't strictly speaking going back in time, more slowing time down. Going back would require you to experience a negative amount of time compared to an observer, not a fraction, which my idea seems to say would require contraction as opposed to expansion.
There's more to it than that but I'll see what you think before making myself look any more of an idiot, ha ha. If this topic is covered elsewhere feel free to amend the situation.
[I'm an electrical & mechanical engineer so this post may look like it was written by a novice (which I am in cosmology) but I understand *most* of the principles and terms.]
- As we know, as one approaches the speed of light, one expands i.e. to a stationary observer you would appear stretched out but to someone traveling at the same velocity you would appear normal.
- The same goes for time i.e. a stationary observer would experience 1 hour but if you went at near lightspeed you would experience say 5 minutes but end up at the same point in time as the observer: 1 hour after you left.
- The universe itself is expanding i.e. no matter where you are it looks like everything is moving away from you, like drawing dots on an uninflated balloon then inflating it: all the dots look like they are 'the centre of the universe'. This presumably means we are expanding i.e. the atoms in our bodies etc. are moving apart, but everything is expanding at the same rate so we don't notice it.
I reckon the way we experience time has something to do with the rate of expansion of the universe. See, if you travel at c for what you experience as e.g. 5 minutes, you will have been expanding at a greater rate than a stationary observer. When you stop you will have expanded to the 'size' you would have been had you stayed still for e.g. 1 hour. If an observer waits one hour he will have been expanding at the 'standard rate'. Both of you end up at the same 'point' in the expansion, just the person traveling at c has sort of taken a short cut.
Similarly, this kind of rules out traveling backwards in time, as that would mean going back to a 'smaller' point in the expansion - more 'compressed' i.e. energy would need to be put in which does not exist. This bit is pretty hard to put into words btw so please bear with me. What I mean is obviously traveling forward in time is possible (meaning you experience a shorter length of time than an observer who stays at the 'default' expansion rate) simply by moving at high velocity. Going back in time however would imply experiencing a longer length of time than a stationary observer i.e. the observer 'sees' 1 hour but you 'see' 3 hours or whatever. Or more plainly, an observer experiences 10 years but you experience a lifetime, so when you come back to normal you'd be 80 years old in 2020 instead of 2060 or whatever. Although that isn't strictly speaking going back in time, more slowing time down. Going back would require you to experience a negative amount of time compared to an observer, not a fraction, which my idea seems to say would require contraction as opposed to expansion.
There's more to it than that but I'll see what you think before making myself look any more of an idiot, ha ha. If this topic is covered elsewhere feel free to amend the situation.
[I'm an electrical & mechanical engineer so this post may look like it was written by a novice (which I am in cosmology) but I understand *most* of the principles and terms.]