- #1
Ken G
Gold Member
- 4,921
- 554
There is a great deal of misconception and misinformation surrounding the topic of radiation pressure in stars. I have found there to be a widespread idea that the cores of stars are held up primarily by radiation pressure, yet this is very rarely true. To see how bad the misinformation there is, consider these quotes:
http://www.astronomydictionary.com/definition/radiation-pressure.html
"Radiation pressure counterbalances the gravitational forces due to the star’s mass
which tend to make it contract. When the star’s energy production ceases and the radiation
pressure is removed, the star will start to collapse. "
The above comes from the very definition of radiation pressure in the online astronomy dictionary, no less, yet it is completely wrong. Not wrong as in some technically detailed sense, but wrong as in the opposite of true. Radiation pressure throughout most stars (especially our Sun) is well known to those who understand stellar interiors to be fairly negligible, even in the core. What's more, the end of fusion most certainly does not bring about the "removal" of the radiation pressure-- the radiation pressure generally increases when fusion ends in a stellar core, but it doesn't matter because it wasn't doing anything important anyway. The only time radiation pressure matters in the core is for stars much more massive than the Sun, like as massive as stars get.
The misinformation is not limited to the online dictionary. Here is a NASA site, no less:
http://imagine.gsfc.nasa.gov/docs/science/know_l2/stars.html
"To add more nucleons to the iron nucleus requires an input of energy,
and so, once the center of the star consists of iron, no more
energy can be extracted. The star's core then has no resistance to the force of gravity,
and once it starts to contract a very rapid collapse will take place."
Here they are talking about a core-collapse supernova, and again we find the patently wrong information that when fusion stops, radiation stops holding up the core of the star. At least they are talking about massive stars here, but most stars that go supernova also do not have cores that are primarily held up by radiation pressure (instead it is usually ideal gas pressure or electron degeneracy pressure). At best they are leaving out most of the story-- what really happens is, fusion ends, hydrostatic equilibrium is just fine for awhile, but gradually the energy losses from the core force the core to (gradually) contract, nothing dramatic there, and little to do with radiation pressure. The dramatic stuff comes later on, generally when additional nuclear "ash" is added to the non-fusing core. Adding mass to the core is the precipitator of all the interesting stuff involving core collapse, and that is true both in a supernova, and at the end of the main sequence when the star begins to expand rapidly.
You can google lots of astronomy course websites and answer-all websites to see this wrong information repeated over and over, I'll just give a few examples of hammering this false theme that the end of fusion causes a loss of radiation pressure which leads to dramatic changes in the core:
http://wind.caspercollege.edu/~marquard/astronomy/sunlike.htm
At some point in time the hydrogen nuclei in the core will run out.
When this occurs there will no longer be a balance between gravitational
pressure inward and photon pressure outward. This is due to the fact that
the photon production ceases when the fusion process runs out of fuel.
At this point the core (almost pure helium) will begin to collapse again.
http://www.ehow.com/about_5438410_life-star-one-solar-mass.html
The main sequence ends when the star's core runs out of hydrogen nuclei. Without the
radiation pressure generated by hydrogen fusion, equilibrium is lost. The star's core,
made up almost entirely of helium now, begins to collapse.
Quite remarkable how consistent is this incorrect theme, once the mainstream understanding of stellar interiors is actually mastered.
http://www.astronomydictionary.com/definition/radiation-pressure.html
"Radiation pressure counterbalances the gravitational forces due to the star’s mass
which tend to make it contract. When the star’s energy production ceases and the radiation
pressure is removed, the star will start to collapse. "
The above comes from the very definition of radiation pressure in the online astronomy dictionary, no less, yet it is completely wrong. Not wrong as in some technically detailed sense, but wrong as in the opposite of true. Radiation pressure throughout most stars (especially our Sun) is well known to those who understand stellar interiors to be fairly negligible, even in the core. What's more, the end of fusion most certainly does not bring about the "removal" of the radiation pressure-- the radiation pressure generally increases when fusion ends in a stellar core, but it doesn't matter because it wasn't doing anything important anyway. The only time radiation pressure matters in the core is for stars much more massive than the Sun, like as massive as stars get.
The misinformation is not limited to the online dictionary. Here is a NASA site, no less:
http://imagine.gsfc.nasa.gov/docs/science/know_l2/stars.html
"To add more nucleons to the iron nucleus requires an input of energy,
and so, once the center of the star consists of iron, no more
energy can be extracted. The star's core then has no resistance to the force of gravity,
and once it starts to contract a very rapid collapse will take place."
Here they are talking about a core-collapse supernova, and again we find the patently wrong information that when fusion stops, radiation stops holding up the core of the star. At least they are talking about massive stars here, but most stars that go supernova also do not have cores that are primarily held up by radiation pressure (instead it is usually ideal gas pressure or electron degeneracy pressure). At best they are leaving out most of the story-- what really happens is, fusion ends, hydrostatic equilibrium is just fine for awhile, but gradually the energy losses from the core force the core to (gradually) contract, nothing dramatic there, and little to do with radiation pressure. The dramatic stuff comes later on, generally when additional nuclear "ash" is added to the non-fusing core. Adding mass to the core is the precipitator of all the interesting stuff involving core collapse, and that is true both in a supernova, and at the end of the main sequence when the star begins to expand rapidly.
You can google lots of astronomy course websites and answer-all websites to see this wrong information repeated over and over, I'll just give a few examples of hammering this false theme that the end of fusion causes a loss of radiation pressure which leads to dramatic changes in the core:
http://wind.caspercollege.edu/~marquard/astronomy/sunlike.htm
At some point in time the hydrogen nuclei in the core will run out.
When this occurs there will no longer be a balance between gravitational
pressure inward and photon pressure outward. This is due to the fact that
the photon production ceases when the fusion process runs out of fuel.
At this point the core (almost pure helium) will begin to collapse again.
http://www.ehow.com/about_5438410_life-star-one-solar-mass.html
The main sequence ends when the star's core runs out of hydrogen nuclei. Without the
radiation pressure generated by hydrogen fusion, equilibrium is lost. The star's core,
made up almost entirely of helium now, begins to collapse.
Quite remarkable how consistent is this incorrect theme, once the mainstream understanding of stellar interiors is actually mastered.
Last edited by a moderator: