How can a diagonalising matrix be unitary?

  • #1
George Keeling
Gold Member
180
41
Homework Statement
This refers to problems A.28/29 from Quantum Mechanics – by Griffiths & Schroeter.
I am confused by the request for unitary diagonalising matrix.
Relevant Equations
T'=ST inverse(S), hermitian (U) = inverse (U)
This refers to problems A.28/29 from Quantum Mechanics – by Griffiths & Schroeter.

I’ve now almost finished the Appendix of this book and been greatly helped with the problems by Wolfram Alpha.

In problems A.28/29 we are asked to "Construct the unitary matrix S that diagonalizes T" where T is some matrix. The diagonal matrix is given by
$$\rm{}T^\prime=STS^{-1}$$The columns of ##\rm{}S^{-1}## are the eigenvectors of ##\rm{}T##. ##\rm{}S## diagonalises ##\rm{}T##.

A unitary matrix is one where the hermitian is the same as the inverse: ##\rm{}U^\dagger=U^{-1}##.

In neither question did ##\rm{}S^{-1}=S^\dagger##. So why are they asking for a "unitary matrix S"? Am I supposed to somehow manipulate ##\rm{}S## so it not only diagonalises ##\rm{}T## but is also unitary?
 
Physics news on Phys.org
  • #2
First off, ##T## has to be Hermitian, so check that first.

If ##T## has repeated eigenvalues, you need to find eigenvectors for an eigenvalue that are orthogonal.
 
  • Like
Likes aaroman
  • #3
T is Hermitian in both questions. In first (T was a 2x2 matrix) there were two different eigenvalues. In the second (T was 3x3) 2 eigenvalues were the same but I found orthogonal eigenvectors (and even normalised them)
 
  • #4
You'll need to show your work then. We can't see where you're going astray.
 
  • #5
In the first of the questions we had
$$T=\left(\begin{matrix}1&1-i\\1+i&0\\\end{matrix}\right)$$Part (d) of the question is "Construct the unitary diagonalizing matrix ##S## , and check explicitly that it diagonalizes ##T##."

I got a diagonalising matrix
$$S=\frac{1}{6}\left(\begin{matrix}2&1-i\\2&-2+2i\\\end{matrix}\right),\ \ S^{-1}=\left(\begin{matrix}2&1\\1+i&-1-i\\\end{matrix}\right)$$Which give
$$T^\prime=STS^{-1}=\left(\begin{matrix}2&0\\0&-1\\\end{matrix}\right)$$Clearly ##S^\dagger\neq S^{-1}## so ##S## is not unitary. Back to my question: why are they asking for a "unitary diagonalizing matrix ##S##"?

My three page workings are in the attached pdf. I have rechecked them with wolfram alpha. Links are provided.

A shortcut is to use wolfram alpha here to get the diagonalising matrix. It's a little confusing because wolfram swaps the ##S,S^{-1}## so its ##S## is my ##S^{-1}## which is formed from the eigenvectors of ##T##. And wolfram's eigenvectors differ from mine by a constant factor.

Nevertheless wolfram's diagonalising matrix is not unitary either.
 

Attachments

  • PA28 2x2 Hermitian matrix.pdf
    184.1 KB · Views: 48
  • #7
It's not significant. My eigenvector for eigenvalue ##2## is ##(1+i)## time emathhelp's. The other one is ##(−0.5+0.5i)## time emathhelp's. You can always multiply an eigenvector by a scalar to get another eigenvector for the same eigenvalue.
 
  • #8
George Keeling said:
It's not significant. My eigenvector for eigenvalue ##2## is ##(1+i)## time emathhelp's. The other one is ##(−0.5+0.5i)## time emathhelp's. You can always multiply an eigenvector by a scalar to get another eigenvector for the same eigenvalue.
Yes, I was careless when I checked. Apologies.

Check out this video which solves a very similar problem. There are some differences in the way the problem is solved compared to your method.

Probably the important bit is from 9:00 if you don't want to watch the full 11 minutes.
 
  • Like
Likes George Keeling
  • #9
The video does a diagonalisation but I think I got that right and it was confirmed by wolfram alpha as per my post #5. The point is that neither I nor wolfram found a unitary diagonalising matrix....
PS thanks for your diligence!
 
  • #10
$$S=\frac{1}{\sqrt{3}}\left(\begin{matrix}1+i&1\\-1&1-i\\\end{matrix}\right)$$
 
  • Informative
Likes George Keeling
  • #11
You have to normalize the eigenvectors.

Because any non-zero multiple of an eigenvector is also an eigenvector, the diagonalizing matrix ##S## isn't unique. You'll need to figure out the correct form for the eigenvectors to make to make ##S## unitary.
 
Last edited:
  • Like
  • Informative
Likes aaroman, George Keeling, PeroK and 1 other person
  • #12
Gosh thanks!
I didn't have to normalise the eigenvectors I don't think. I took the eigenvectors which are in the ##S^{-1}## of my #5 and multiplied each by a constant to get
$$S^{-1}=\left(\begin{matrix}2a&b\\\left(1+i\right)a&\left(-1-i\right)b\\\end{matrix}\right)$$##S^{-1}## must be unitary as well of course so multiply it by its hermitian and we must get
$$\left(\begin{matrix}2a&b\\\left(1+i\right)a&\left(-1-i\right)b\\\end{matrix}\right)\left(\begin{matrix}2a^\ast&\left(1-i\right)a^\ast\\b^\ast&\left(-1+i\right)b^\ast\\\end{matrix}\right)=\left(\begin{matrix}1&0\\0&1\\\end{matrix}\right)$$Thanks wolfram too for finding an infinity solutions:
$$-\frac{1}{\sqrt6}Re{\left(a\right)}\ \le\frac{1}{\sqrt6},\ \ Im{\left(a\right)}=\pm\frac{\sqrt{1-6{Re{\left(a\right)}}^2}}{\sqrt6}$$$$-\frac{1}{\sqrt3}Re{\left(b\right)}\ \le\frac{1}{\sqrt3},\ \ Im{\left(b\right)}=\pm\frac{\sqrt{1-3{Re{\left(b\right)}}^2}}{\sqrt3}$$So I pick an easy one:
$$a=\frac{1}{\sqrt6},\ \ b=\frac{1}{\sqrt3}$$and
$$S^{-1}=\left(\begin{matrix}\frac{2}{\sqrt6}&\frac{1}{\sqrt3}\\\frac{1+i}{\sqrt6}&-\frac{1+i}{\sqrt3}\\\end{matrix}\right),\ \ S=\left(\begin{matrix}\frac{2}{\sqrt6}&\frac{1-i}{\sqrt6}\\\frac{1}{\sqrt3}&-\frac{1-i}{\sqrt3}\\\end{matrix}\right)$$how amazing, it is unitary and it works.

Not as neat as @martinbn's, but still.

Thanks again everyone. I'll leave the 3x3 beast until Monday.
Corrected error in general solution.
 
Last edited:
  • #13
George Keeling said:
Gosh thanks!
I didn't have to normalise the eigenvectors I don't think.
You effectively did. Note that the columns of your ##S^{-1}## are normalized now.

If the columns of ##U## are the eigenvectors, then each element of ##U^\dagger U## is the product of eigenvectors. Requiring ##U^\dagger U = I## is the same as saying the eigenvectors are orthonormal.

If you want a nicer looking ##S^{-1}##, you can do something like this:
$$\begin{pmatrix}
\frac{2}{\sqrt 6} & \frac{1}{\sqrt 3} \\
\frac{1+i}{\sqrt 6} & \frac{-(1+i)}{\sqrt 3}
\end{pmatrix} = \begin{pmatrix}
\sqrt{\frac 23} & \sqrt{\frac 13} \\
\sqrt{\frac 13}e^{i\pi/4} & -\sqrt{\frac 23}e^{i\pi/4}
\end{pmatrix}.$$ Multiply the second column by ##e^{-i\pi/4}## (which preserves normalization) to get
$$S^{-1} = \begin{pmatrix}
\sqrt{\frac 23} & \sqrt{\frac 13}e^{-i\pi/4} \\
\sqrt{\frac 13}e^{i\pi/4} & -\sqrt{\frac 23}
\end{pmatrix}.$$ Alternately, you could instead multiplied the first column by ##e^{-i\pi/4}## and the second column by -1 to get
$$S^{-1} =
\begin{pmatrix}
\sqrt{\frac 23}e^{-i\pi/4} & -\sqrt{\frac 13} \\
\sqrt{\frac 13} & \sqrt{\frac 23}e^{i\pi/4}
\end{pmatrix} =
\begin{pmatrix}
\sqrt{\frac 13}(1-i) & -\sqrt{\frac 13} \\
\sqrt{\frac 13} & \sqrt{\frac 13}(1+i)
\end{pmatrix} =
\frac 1{\sqrt 3}\begin{pmatrix}
1-i & -1 \\
1 & 1+i
\end{pmatrix}.$$
 
  • Like
Likes aaroman and George Keeling
  • #14
A matrix ##\hat{M} \in \mathbb{C}^{d \times d}## can be diagonalized with a unitary transformation if and only if it's a normal matrix. A Matrix is called normal, if ##\hat{M} \hat{M}^{\dagger}=\hat{M}^{\dagger} \hat{M}##. A very nice paper on this is

https://doi.org/10.1119/1.13860
 
  • Like
  • Love
Likes George Keeling and WWGD
  • #15
vanhees71 said:
A matrix ##\hat{M} \in \mathbb{C}^{d \times d}## can be diagonalized with a unitary transformation if and only if it's a normal matrix. A Matrix is called normal, if ##\hat{M} \hat{M}^{\dagger}=\hat{M}^{\dagger} \hat{M}##. A very nice paper on this is

https://doi.org/10.1119/1.13860
I guess a difference with Real matrices is that Diagonal Complex ones both stretch and rotate , though by different amounts in each component, rather than just stretching , like the Reals?
 
  • #16
I don't know, what you mean by this. The point is that diagonal (real or complex) matrices commute. If you can diagonalize a matrix ##\hat{M}## with a unitary transformation, i.e., you have ##\hat{M}=\hat{U} \hat{D} \hat{U}^{\dagger}## with ##\hat{D}## being diagonal and since then ##\hat{M}^{\dagger}=\hat{U} \hat{D}^{\dagger} \hat{U}^{\dagger}## it follows that
$$\hat{M} \hat{M}^{\dagger} = \hat{U} \hat{D} \hat{D}^{\dagger} \hat{U}^{\dagger} = \hat{U} \hat{D}^{\dagger} \hat{D} \hat{U}^{\dagger} = \hat{M}^{\dagger} \hat{M},$$
i.e., if a matrix is diagonalizable with a unitary transformation, it's necessarily normal. The other way, i.e., that every normal matrix is diagonalizable with a unitary transformation can be proven by induction. It's not too complicated.
 
  • Like
Likes WWGD and topsquark

Similar threads

Replies
9
Views
1K
  • Linear and Abstract Algebra
Replies
14
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
847
  • Advanced Physics Homework Help
Replies
14
Views
2K
  • Quantum Physics
Replies
1
Views
1K
Replies
1
Views
993
  • Quantum Interpretations and Foundations
2
Replies
59
Views
10K
  • Advanced Physics Homework Help
Replies
1
Views
1K
Replies
8
Views
1K
Back
Top