Intro to Power Systems: Calculating Power

  • #1
SumDood_
30
6
Homework Statement
Calculate the power in the given circuit
Relevant Equations
P=IV
Help me understand what I am missing. So this is the circuit:
1696847734105.png

Given:
##V_{RMS} = 120V##
##I_{RMS}= 10A##
##v=Re \{Ve^{jwt}\}##
##i=Re \{Ie^{j(wt-\psi)}\}##
(a) Calculate and sketch real and reactive power P and Q as a function of the angle ψ
(b) Calculate and sketch the instantaneous power

What I've done so far:
##V = 120\sqrt{2}cos(\omega t)##
##I = 10\sqrt{2}cos(\omega t-\psi)##
##
\begin{align*}
P = iv &= 120\sqrt{2}cos(\omega t) \cdot 10\sqrt{2}cos(\omega t-\psi) \\
&= 120\sqrt{2}\frac{1}{2}(e^{j\omega t}+e^{-j\omega t}) \cdot 10\sqrt{2}\frac{1}{2}(e^{j(\omega t-\psi)}+e^{-j(\omega t-\psi)}) \\
&= 600(e^{j\psi} + e^{-j\psi} + e^{j(2\omega t - \psi)} + e^{-j(2\omega t - \psi)}) \\
&= 2400(cos(2\omega t - \psi) + cos(\psi))
\end{align*}
##

I am not sure if the work I've done is correct. If it is, I don't understand how to differentiate P and Q from the solution I have worked out.
Any help is appreciated!
 
Last edited:
Physics news on Phys.org
  • #2
First, which device is delivering power and which is receiving?
Then I would approach this using phsor notation.
 
  • #3
My knowledge of EE is a bit basic but shouldn't your circuit contain a load (R and/or L and/or C)? Does it make sense to consider a circuit consisting of only an ideal current source and an ideal voltage source? Or are the sources non-ideal and you have [edit - that should be 'haven't'] supplied all the data?
 
Last edited:
  • #4
scottdave said:
First, which device is delivering power and which is receiving?
Then I would approach this using phsor notation.
What I have provided is what is mentioned in the question. Let's assume that the current source is delivering power.
 
  • #5
Steve4Physics said:
My knowledge of EE is a bit basic but shouldn't your circuit contain a load (R and/or L and/or C)? Does it make sense to consider a circuit consisting of only an ideal current source and an ideal voltage source? Or are the sources non-ideal and you have suppled all the data?
You are right that this kind of circuit won't exist in the real world, but the question I've described is as stated in the book.
 
  • #6
With the current direction shown, the voltage source (I assume) shown as DC, and the text giving a voltage in RMS (which implies AC), just how much more confusing could it get?
 
  • Haha
Likes BvU
  • #7
It seems that everyone is finding this question to be weird. So, I'll post the solution that is at the end of the book:
##P = \frac{1}{2}VIcos(\psi)##
##Q = \frac{1}{2}VIsin(\psi)##
Instantaneous power
##p=2Pcos^{2}(\omega t)+Qsin(2\omega t)##
 
  • #8
SumDood_ said:
It seems that everyone is finding this question to be weird. So, I'll post the solution that is at the end of the book:
##P = \frac{1}{2}VIcos(\psi)##
##Q = \frac{1}{2}VIsin(\psi)##
Instantaneous power
##p=2Pcos^{2}(\omega t)+Qsin(2\omega t)##
I suppose you can just treat the question as a maths exercise and ignore the (unphysical!) physics.

Working backwards from the expected answers gives some clues.

The complex power, ##S##, is ##S= P+jQ## where ##P## is the required real power and ##Q## is the required reactive power. So you need to find a (complex) expression for ##S##.

According to Wikipedia (https://en.wikipedia.org/wiki/AC_power) the complex power, ##S##, is given by ##S = \hat V \hat I^*## where (in this question) ##\hat V = V_{rms}e^{j \omega t}## and ##\hat I = I_{rms}e^{j(\omega t- \phi)}##. Note the use of the complex conjugate.

To get the instantaneous power I guess one way is to evaluate ##p(t) = v(i)i(t)## with ##v(t) = V\cos (\omega t)## and ##i(t) = I \cos(\omega t - \phi)## and use some trig’ identities, and the expressions for ##P## and##Q##, to get the answer in the required format.
 
  • Like
Likes SumDood_

1. What is power in a power system?

Power in a power system is the rate at which energy is transferred or converted. It is measured in watts (W) and is a crucial aspect of understanding and analyzing power systems.

2. How is power calculated in a power system?

Power can be calculated by multiplying the voltage (V) and current (I) in a circuit. The formula for power is P = VI, where P is power in watts, V is voltage in volts, and I is current in amps.

3. What is the difference between real power and reactive power?

Real power is the actual power that is consumed by a load in a power system. It is responsible for performing useful work, such as powering lights or appliances. Reactive power, on the other hand, is the power that is required to maintain the voltage in a circuit. It does not perform any useful work but is necessary for the functioning of the power system.

4. How do power factor and efficiency relate to power systems?

Power factor is a measure of how efficiently a power system is operating. It is the ratio of real power to apparent power (the product of voltage and current). A higher power factor indicates a more efficient power system. Efficiency, on the other hand, is the ratio of useful output power to input power. A more efficient power system will have a higher power factor.

5. What are some common units used to measure power in power systems?

Power can be measured in watts (W), kilowatts (kW), megawatts (MW), or gigawatts (GW) depending on the size of the power system. For larger systems, units such as kilovolt-amps (kVA) or megavolt-amps (MVA) may also be used. In some cases, horsepower (hp) may also be used as a unit of power in power systems.

Similar threads

  • Engineering and Comp Sci Homework Help
Replies
17
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
19
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
962
Replies
1
Views
556
  • Engineering and Comp Sci Homework Help
Replies
4
Views
6K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
268
  • Engineering and Comp Sci Homework Help
Replies
9
Views
1K
  • Introductory Physics Homework Help
Replies
17
Views
404
Back
Top