Killing vector fields on S2

  • Thread starter alexriemann
  • Start date
  • Tags
    Line element
  • #1
alexriemann
3
0
Homework Statement
I am asked to find the Killing vector fields on ##S^2## where the line element is given by ##ds^2=d\theta\otimes d\theta +\sin^2\theta d\phi\otimes d\phi##.

- Solve the Killing equation for the ##(\theta,\theta)## components, that is ##(\mathcal L_\xi g)_{\theta\theta}=0## and show that it gives a Killing vector field ##\xi^{(1)}## that is only a function of ##\phi##, ##\xi^{(1)}=F(\phi)##. Show that this function has to be periodic and assume that it has the simple form ##\xi^{(1)}=A\sin(\phi-\phi_0)##

- Integrate the other Killing component equations and obtain two more Killing vector fields ##\xi^{(2)}## and ##\xi^{(3)}## that will depend on integration constant ##\phi_0, c_1,c_2##. By giving these constants simples values, recover the **Killing operators** ##\xi_1,\xi_2,\xi_3## given in the directions associated to the **Killing vector fields** ##\xi^{(1)},\xi^{(2)},\xi^{(3)}##.
Relevant Equations
$$\mathcal L_\xi g=0$$

$$\xi_1=(-\sin\phi,-\cot\theta\cos\phi)$$
$$\xi_2=(\cos\phi,-\cot\theta\sin\phi)$$
$$\xi_3=(0,1)$$
I know how to solve this problem by considering the Killing equation, namely ##\mathcal L_\xi g=0## that gives three differential equations involving the components of ##\xi=(\xi^\theta,\xi^\phi)## that can be integrated. The result I get, which I know to be true because this is a common result that can be found anywhere on the web, is:

$$\xi^\theta=\nu\cos\phi-\mu\sin\phi$$
$$\xi^\phi=\delta-\cot \theta(\mu\cos\phi+\nu\sin\phi)$$

Where ##\mu,\nu,\delta## are integration constants. By setting these constants to ##(\mu,\nu,\delta)=\{(1,0,0),(0,1,0),(0,0,1)\}##, I obtain three independent vector fields that constitute a basis for the Killing Lie algebra on ##S^2##. These are, in the chart:

$$\xi_1=(-\sin\phi,-\cot\theta\cos\phi)$$
$$\xi_2=(\cos\phi,-\cot\theta\sin\phi)$$
$$\xi_3=(0,1)$$

So, this is no big deal. However, the directions of my assignment insist that we strictly stick to the following procedure to find ##\xi_1,\xi_2,\xi_3## (these are given in the directions and match the vectors I wrote above) which is the source of my confusion:

- Solve the Killing equation for the ##(\theta,\theta)## components, that is ##(\mathcal L_\xi g)_{\theta\theta}=0## and show that it gives a Killing vector field ##\xi^{(1)}## that is only a function of ##\phi##, ##\xi^{(1)}=F(\phi)##. Show that this function has to be periodic and assume that it has the simple form ##\xi^{(1)}=A\sin(\phi-\phi_0)##

- Integrate the other Killing component equations and obtain two more Killing vector fields ##\xi^{(2)}## and ##\xi^{(3)}## that will depend on integration constant ##\phi_0, c_1,c_2##. By giving these constants simples values, recover the **Killing operators** ##\xi_1,\xi_2,\xi_3## given in the directions associated to the **Killing vector fields** ##\xi^{(1)},\xi^{(2)},\xi^{(3)}##.

I must admit that I am very confused with what my teacher is saying. He is basically saying that solving the three Killing component equations ##(\mathcal L_\xi g)_{\theta\theta}=(\mathcal L_\xi g)_{\theta\phi}=(\mathcal L_\xi g)_{\phi\phi}=0## give three Killing vector fields that depend on integration constants whereas, to my understanding, those three equation are solved for the two components of one generic vector field ##\xi=(\xi^\theta,\xi^\phi)## that give rise to three independent Killing vector fields when the integration constants are given some values.

For example, the first Killing component equation reads : ##\partial_\theta\xi^\theta=0##, which tells us that the ##\theta##-component of the Killing vector field is a function that only depends on ##\phi##. This is very different compared to saying that this equation gives a Killing vector field, isn't it?

Can someone make sense of what my teacher is trying to say or is that just wrong overall? I really do think that the directions are not only confusing but wrong. Any insight would be very much appreciated.
 
Last edited:

1. What are Killing vector fields on S2?

Killing vector fields on S2 are vector fields that preserve the metric of the 2-sphere. In other words, they generate isometries of the sphere, which means they preserve distances and angles on the surface.

2. How many linearly independent Killing vector fields are there on S2?

There are three linearly independent Killing vector fields on S2. These vector fields correspond to rotations around the x-axis, y-axis, and z-axis in Euclidean 3-space.

3. What is the Lie algebra of Killing vector fields on S2?

The Lie algebra of Killing vector fields on S2 is isomorphic to the Lie algebra of the group SO(3) of rotations in 3-dimensional Euclidean space. This Lie algebra is spanned by the three linearly independent Killing vector fields on S2.

4. How do Killing vector fields on S2 relate to the isometry group of the sphere?

Killing vector fields on S2 generate the isometry group of the sphere, which is the group of all diffeomorphisms that preserve the metric of the sphere. This group is isomorphic to the group SO(3) of rotations in 3-dimensional Euclidean space.

5. What are some applications of Killing vector fields on S2?

Killing vector fields on S2 are important in differential geometry and physics, particularly in the study of Riemannian manifolds and general relativity. They play a crucial role in understanding the symmetries and geometric properties of curved spaces like the sphere.

Similar threads

Replies
5
Views
405
  • Advanced Physics Homework Help
Replies
10
Views
2K
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
9
Views
2K
Replies
1
Views
810
  • Special and General Relativity
Replies
16
Views
885
  • Advanced Physics Homework Help
Replies
16
Views
2K
  • Special and General Relativity
Replies
9
Views
1K
  • Advanced Physics Homework Help
Replies
5
Views
3K
Back
Top