Max voltage of an air capacitor

Click For Summary
The maximum voltage of the parallel plate capacitor filled with air is calculated to be 30 kV, derived from the breakdown field (3 × 10^6 V/m) and the plate separation (0.01 m). The capacitance of the capacitor is determined to be approximately 0.0885 pF using the formula C = εA/d. The maximum charge the capacitor can hold is calculated as 2.655 nC, using the relationship Q = CV. There was a clarification regarding the notation of charge, ensuring it was correctly expressed in nanocoulombs. The calculations confirm the capacitor's specifications and the values align with the expected physics principles.
HelloCthulhu
Messages
150
Reaction score
3

Homework Statement


(a) A parallel plate capacitor has area A = 1 cm2, a plate separation of d = 0.01m, and is filled with air. If the breakdown field is E0 = 3 × 106V/m, calculate the maximum voltage and charge the capacitor can hold.

Homework Equations


dielectric constant of air = 1

Q=CV

Vmax = E0 x d

The Attempt at a Solution


The breakdown field is the minimum electric field at which a material ionizes; in air, this means a sparkforms.Maximum voltage:$$V{max}=\varepsilon_0\times d =(3\times10^6\times0.01) =(3\times10^4)V = 30kV$$To find the maximum charge corresponding to V = 30kV, we need the capacitance of the parallel platecapacitor,$$\frac{(8.85×10^{-12})\times(0.0001)}{0.01}=\frac{(8.85×10^-16)}{0.01}=8.85×10^{-14}F=0.0885pF$$$$V{max}=(3\times10^4 )\times(0.0885\times10^{-12}) =(3\times10^4)V=30kV$$The charge is determined from C = Q/V :$$Q=CV=(3\times10^4 )\times(0.0885\times10^{-12}) =2.655\times10^9C=2.655nC$$
 
Physics news on Phys.org
HelloCthulhu said:
The charge is determined from C = Q/V

$$\frac{(8.85×10^{-12})\times(0.0001)}{0.01}=\frac{(8.85×10^-16)}{0.01}=8.85×10^{-14}F=0.0885pF$$
##Q=CV=(3\times10^4 )\times(0.0885\times10^{-12}) =2.655\times10^9C=2.655nC##
Why two different values for the capacitance?
 
kuruman said:
Why two different values for the capacitance?

I might not understand what you mean by "two different values for the capacitance", but I'll try to clarify.

To find the maximum charge for the capacitor, I first have to find the capacitance:

$$\frac{(8.85×10^{-12})\times(0.0001)}{0.01}=\frac{(8.85×10^-16)}{0.01}=8.85×10^{-14}F=0.0885pF$$

This is the maximum charge:

$$Q=CV=(3\times10^4 )\times(0.0885\times10^{-12}) =2.655\times10^9C=2.655nC$$
 
No problem, my mistake. I looked at the powers of 10 not noticing that you shifted the decimal over. It looks fine except that 109C should be 10-9C, but I know what you mean because you have nC in the end.
 
Oops! Thank you for catching that!

Maximum charge:

$$Q=CV=(3\times10^4 )\times(0.0885\times10^{-12}) =2.655\times10^-9C=2.655nC$$
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K