Relating acceleration to distance and time

In summary, the textbook procedure yields a result that is double that of your attempt because vˉ= vf/2 where vf = ∆v assuming constant acceleration.
  • #1
golya
4
3
Homework Statement
Given distance = 402 metres and time = 5.5 seconds, I need to find acceleration.
Relevant Equations
vˉ= vf/2 = (at)/2
I’m an absolute beginner and I need someone to show me where I’m wrong.

Knowing the formula of acceleration ∆v (change in velocity) / ∆t (change in time) where ∆v = ∆x (distance) / ∆t, a common way of relating acceleration to distance is to say a (acceleration) = (distance/time)/time = distance/time^2.

Given distance = 402 metres and time = 5.5 seconds, I need to find acceleration.

Thus I proceeded by calculating a = 402/5.5^2 = 402/30.25 = 13,28 m/s^2. In the same manner I thought I could calculate velocity = 402/5.5 = 73.09 m/s.

However, my textbook reaches a different answer where I don’t understand the thought process.

My textbook proceeds with the formula

s (displacement) = vˉ (average speed) x t (time)

continuing with the formula

vf (final speed) = a x t

deriving

vˉ= vf/2 = (at)/2

Plugging into the above formula s= vˉt, we reach

s = [(at)/2]t = at^2/2

Only now it proceeds to deriving acceleration from displacement and time:

a = 2s/t^2 = 2x402 m / 5.5s^2 = 27 m/s^2

In short, my attempt was using ∆v while their procedure is using vˉ reaching exactly twice my answer because vˉ= vf/2 where vf = ∆v assuming constant acceleration.

But why do they use average velocity instead of change in velocity if a = distance/time^2?

What am I missing?
 
Physics news on Phys.org
  • #2
golya said:
Homework Statement: Given distance = 402 metres and time = 5.5 seconds, I need to find acceleration.
Relevant Equations: vˉ= vf/2 = (at)/2

I’m an absolute beginner and I need someone to show me where I’m wrong.

Knowing the formula of acceleration ∆v (change in velocity) / ∆t (change in time) where ∆v = ∆x (distance) / ∆t, a common way of relating acceleration to distance is to say a (acceleration) = (distance/time)/time = distance/time^2.
This is not right. Average velocity is displacement/time. Velocity is the derivative of displacement with respect to time:$$v_{avg} = \frac{\Delta x}{\Delta t}$$$$v = \frac{dx}{dt}$$
 
  • #3
PeroK said:
This is not right. Average velocity is displacement/time. Velocity is the derivative of displacement with respect to time:$$v_{avg} = \frac{\Delta x}{\Delta t}$$$$v = \frac{dx}{dt}$$
He is right because the acceleration is constant and the initial speed is 0
 
  • #4
I think I understand what happened.

My first mistake: distance/time^2 is NOT actually a formula for acceleration but merely an illustration of why acceleration is measured in terms of m/s^2. Therefore the phrase refers merely to units of measurement and not to a formula.

My second mistake: the formula ∆x/∆t (distance/time) does not yield ∆v (change in speed) but vˉ (average speed). This second mistake was the result of the first one.

Therefore the textbook procedure makes sense.
 
  • Like
Likes berkeman and PeroK
  • #5
AlexJicu08 said:
He is right because the acceleration is constant and the initial speed is 0
You're wrong as well. Assuming constant acceleration from rest:$$\Delta x = \frac 1 2 a t^2$$$$a = \frac{2\Delta x}{t^2}$$
 
  • Like
Likes MatinSAR and golya
  • #6
PeroK said:
You're wrong as well. Assuming constant acceleration from rest:$$\Delta x = \frac 1 2 a t^2$$$$a = \frac{2\Delta x}{t^2}$$
Thank you!
 
  • Like
Likes berkeman

Similar threads

  • Introductory Physics Homework Help
Replies
17
Views
911
  • Introductory Physics Homework Help
Replies
6
Views
826
  • Introductory Physics Homework Help
Replies
4
Views
550
  • Introductory Physics Homework Help
Replies
5
Views
1K
  • Introductory Physics Homework Help
Replies
3
Views
870
  • Introductory Physics Homework Help
Replies
12
Views
148
  • Introductory Physics Homework Help
Replies
13
Views
787
  • Introductory Physics Homework Help
2
Replies
38
Views
2K
  • Introductory Physics Homework Help
Replies
15
Views
1K
  • Introductory Physics Homework Help
Replies
8
Views
1K
Back
Top