Rotation of macroscopic magnetization = average (Magnetization current density)

  • #1
LeoJakob
21
1
Thread moved from the technical forums to the schoolwork forums
Homework Statement
rotation of macroscopic magnetization = averege (Magnetization current density )
Relevant Equations
##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##

,## \vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}##

,##\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}##

, ##\vec{\nabla} \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \vec{\nabla}) \vec{A}-\vec{B}(\vec{\nabla} \cdot \vec{A})+\vec{A}(\vec{\nabla} \cdot \vec{B})-(\vec{A} \cdot \vec{\nabla}) \vec{B} ##
In the headline to the question the statement should have been:
rotation of macroscopic magnetization = averege (Magnetization current density )

The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$

Proof:
$$
\vec{\nabla} \times \vec{M}=\overline{\vec{j}_{mag}}
$$

Attempt
$$\begin{array}{l}\vec{\nabla} \times \vec{M}=\vec{\nabla} \times\left(\frac{1}{V} \sum \limits_{i=1}^{N} \vec{m}_{i}\right) \\ =\frac{1}{V} \vec{\nabla} \times\left(\sum \limits_{i=1}^{n} \frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \partial^{3} \vec{r}^{\prime}\right) \\ =\frac{1}{2 V} \sum \limits_{i=1}^{n} \underbrace{\vec{\nabla} \times\left(\left(\overrightarrow{r^{\prime}}-\overrightarrow{R_{i}}\right) \times \overrightarrow{j_{\text {mag }}^{(i)}}\left(\overrightarrow{r^{\prime}}\right)\right)}_{=(i)} d^{3} \vec{r}^{\prime} \\
= ?\end{array}$$

$$
\begin{array}{l}(i)=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\ +\left(\vec{r}^{\prime}-\vec{R}_{i}\right)(\underbrace{\vec{\nabla} \cdot \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)}_{=0})-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)
\\
\\
=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\
-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \end{array} $$

I don’t have more ideas right now, can someone help me?
 
Last edited:
Physics news on Phys.org
  • #2
LeoJakob said:
The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$

As indicated, ##\vec M (\vec r)## is a function of the position vector ##\vec r## for a point in the medium. So, the right-hand side of the above equation for ##\vec M(\vec r)## must be a function of ##\vec r##. Note, however, that ##\vec m_i## for the magnetization of the ##i^{th}## particle located at ##\vec R_i## does not depend on the vector ##\vec r##.

However, the expression ##\frac 1 v \sum_{i=1}^N \vec m_i## does depend on ##\vec r## because the “mesoscopic” volume ##v## is assumed to be centered on ##\vec r##. The sum is over all particles located in ##v##. So, the sum does depend on ##\vec r## even though ##m_i## for a particular particle does not depend on ##\vec r##.

When forming the curl (“rotation”) of ##\vec M(\vec r)##, the derivative operators are derivatives with respect to the components of ##\vec r##. These derivative operators do not act on ##\vec r’## appearing in the expression for ##\vec m_i##.

The change in ##\vec M(\vec r)## for a small change ##\vec {dr}## in ##\vec r## is due to shifting the location of the volume ##v## by ##\vec {dr}## and performing the sum ##\sum_{i= 1}^N \vec m_i## over the particles in this shifted volume.

So, it’s pretty tricky. The text says “Analogous to the macroscopic electric polarization, introduce the macroscopic magnetizarion…”. Perhaps the textbook has already done a similar calculation for electric polarization ##\vec P(\vec r)## in deriving ##\vec{\nabla} \cdot \vec P(\vec r) = - \rho_{\text {pol}}(\vec r)##, where ##\rho_{\text {pol}}## is the polarization charge density. If so, it might be helpful to study this derivation before tackling the magnetization problem.
 
  • Like
Likes LeoJakob

Related to Rotation of macroscopic magnetization = average (Magnetization current density)

1. What is the significance of the rotation of macroscopic magnetization?

The rotation of macroscopic magnetization refers to the process in which the direction of the magnetization vector in a material changes over time. This phenomenon is crucial in understanding the behavior of magnetic materials and is often used in applications such as magnetic storage devices and magnetic resonance imaging.

2. What is meant by average magnetization current density?

The average magnetization current density is a measure of the flow of magnetization within a material. It represents the average rate at which the magnetization vector changes with respect to time and is a key parameter in describing the dynamics of magnetic materials.

3. How is the rotation of macroscopic magnetization related to the average magnetization current density?

The rotation of macroscopic magnetization is directly related to the average magnetization current density through the equation given. This equation quantifies the relationship between the rate of change of the magnetization vector and the flow of magnetization within a material, providing valuable insights into the magnetic properties of the material.

4. What factors can influence the rotation of macroscopic magnetization?

Several factors can influence the rotation of macroscopic magnetization, including external magnetic fields, temperature, and the material's intrinsic magnetic properties. These factors can affect the dynamics of the magnetization vector and play a crucial role in determining the overall behavior of magnetic materials.

5. How is the concept of rotation of macroscopic magnetization applied in practical applications?

The concept of rotation of macroscopic magnetization is applied in various practical applications, such as in magnetic storage devices like hard drives and magnetic resonance imaging machines. By understanding and manipulating the rotation of magnetization, engineers and scientists can develop new technologies that rely on magnetic properties for data storage and medical imaging purposes.

Similar threads

  • Advanced Physics Homework Help
Replies
3
Views
413
  • Advanced Physics Homework Help
Replies
1
Views
449
  • Advanced Physics Homework Help
Replies
6
Views
336
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
12
Views
1K
  • Advanced Physics Homework Help
Replies
11
Views
1K
Replies
1
Views
402
  • Advanced Physics Homework Help
Replies
17
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
17
Views
411
Back
Top