Signs of work done and delta K.E.

In summary: W = |\vec F| \, |\vec s| \, \sin \theta = $$Again, the answers are negative regardless of the coordinate system.
  • #1
Ebby
41
14
Homework Statement
Find the work done by the braking force and the change in kinetic energy of the car.
Relevant Equations
F = m . a
s = v_final^2 - v_initial^2 / 2 . a
W = F . s
delta K.E. = K.E._final - K.E._initial
I'm asking about this with particular reference to the signs of the answers. Here is the question:

cap1.JPG

cap2.JPG


The answers in the back of the book are:

(a) ##1.2 \times 10^4 \text{ N}##
(b) ##39 \text{ m}##
(c) ##4.7 \times 10^5 \text{ J}##
(d) ##4.7 \times 10^5 \text{ J}##

Here's a rough sketch of the situation. I suppose it's not really necessary, but I feel the vectors do emphasise the idea of direction and sign.
pic.jpg


I'll now go through each part, with particular attention to the signs of the answers. I have some disagreements with the book, especially regarding parts (c) and (d).

(a) The acceleration ##\vec a## is the negative ##x## direction, so the component ##F_x## must also be negative:$$F_x = m \cdot a_x = 1500 \cdot -8 = -1.2 \times 10^4 \text { N}$$The book has this answer as being positive. I guess what they're really asking for is the magnitude of the force. OK, accepted.

(b) No problems here. ##|\vec s|## and ##s_x## happen to be the same.$$s_x = \frac {{v_x}_f^2 - {v_x}_i^2} {2 \cdot a_x} = \frac {0 - \left( \frac {90} {3.6} \right)^2} {2 \cdot -8} = \frac {-625} {-16} = 39 \text { m}$$

Oops I accidentally pressed post thread. This isn't finished quite yet. How do I delete it?
 
Last edited:
Physics news on Phys.org
  • #2
Ebby said:
Homework Statement: Find the work done by the braking force and the change in kinetic energy of the car.
Relevant Equations: F = m . a
s = v_final^2 - v_initial^2 / 2 . a
W = F . s
delta K.E. = K.E._final - K.E._initial

I'm asking about this with particular reference to the signs of the answers. Here is the question:

View attachment 328218
View attachment 328219

The answers in the back of the book are:

(a) ##1.2 \times 10^4 \text{ N}##
(b) ##39 \text{ m}##
(c) ##4.7 \times 10^5 \text{ J}##
(d) ##4.7 \times 10^5 \text{ J}##

Here's a rough sketch of the situation. I suppose it's not really necessary, but I feel the vectors do emphasise the idea of direction and sign.
View attachment 328283

I'll now go through each part, with particular attention to the signs of the answers. I have some disagreements with the book, especially regarding parts (c) and (d).

(a) The acceleration ##\vec a## is the negative ##x## direction, so the component ##F_x## must also be negative:$$F_x = m \cdot a_x = 1500 \cdot -8 = -1.2 \times 10^4 \text { N}$$The book has this answer as being positive. I guess what they're really asking for is the magnitude of the force. OK, accepted.
That's what braking force means. The sign is only relevant once you have chosen a coordinate system. You could have the car moving in the negative ##x## direction (or any other direction).
Ebby said:
(b) No problems here. ##|\vec s|## and ##s_x## happen to be the same.$$s_x = \frac {{v_x}_f^2 - {v_x}_i^2} {2 \cdot a_x} = \frac {0 - \left( \frac {90} {3.6} \right)^2} {2 \cdot -8} = \frac {-625} {-16} = 39 \text { m}$$

(c) $$W = |\vec F| \, |\vec s| \, \cos \theta = $$
If you were going to say that the answers to parts c) and d) should be negative, then I agree with you. These are negative values regardless of the coordinate system.
 
  • Like
Likes MatinSAR
  • #3
Yes that's exactly what I was going to say! Thanks :)
 

Similar threads

  • Introductory Physics Homework Help
Replies
4
Views
680
  • Introductory Physics Homework Help
Replies
5
Views
630
  • Introductory Physics Homework Help
Replies
12
Views
798
  • Introductory Physics Homework Help
Replies
2
Views
2K
  • Introductory Physics Homework Help
Replies
3
Views
291
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
9
Views
2K
Replies
1
Views
642
  • Introductory Physics Homework Help
Replies
6
Views
704
  • Introductory Physics Homework Help
Replies
1
Views
423
Back
Top