Why does the given conserved quantity mean the motion is on a cone?

  • #1
deuteron
55
12
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: .

An electrone moves in a magnetic field ##B(\vec r)=g \frac {\vec r}{|\vec r|^3}##. Why does the conservation of the quantity $$\vec J=\vec r \times\vec p +eg\frac {\vec r}{|\vec r|}$$ mean that the motion is on the surface of a cone?
 
Physics news on Phys.org
  • #2
Is this homework?
 
  • #3
You multiplying ##\vec{J}## with ##\vec{r}## gives
$$\vec{r} \cdot \vec{J}=e g r.$$
Now use spherical coordinates with ##\vec{J}/J## as the polar axis. Then the equation implies
$$J x_3 =e g r \; \Rightarrow \; \cos \vartheta=\frac{x_3}{r}=\frac{e g}{J}=\text{const},$$
which is the (implicit equation of a cone).

In the spherical coordinates you thus have
$$\vec{r}=\begin{pmatrix} r \sin \vartheta \cos \varphi \\ r \sin \vartheta \sin \varphi \\ e g r/J \end{pmatrix},$$
which describes a cone since ##\vartheta=\text{const}##.
 
  • Like
Likes PhDeezNutz, TSny and deuteron

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
15
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Introductory Physics Homework Help
Replies
1
Views
168
  • Introductory Physics Homework Help
Replies
1
Views
182
  • Introductory Physics Homework Help
Replies
12
Views
248
  • Electromagnetism
Replies
14
Views
1K
  • Advanced Physics Homework Help
Replies
15
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
947
Back
Top