Why is electric field at the center of a charged disk not zero?

In summary, according to symmetry of concentric rings about the center, the electric field at the center of a uniformly charged disk should be zero, but this is not the case due to the finite contribution of each concentric ring.
  • #1
vcsharp2003
897
176
Homework Statement
A disk that is very thin and uniformly charged has a non-zero electric field at its center. Explain why this statement is true or false.
Relevant Equations
##E = \dfrac {\sigma} {2 \epsilon_{0}} [1 - \dfrac {x} {(R^2 + x^2)^{\frac {1}{2}}} ]##, where
##E## is electric field strength at a point P on the axis of the disk
##x## is distance of point P from the center of the sphere ( axis is perpendicular to the disk and passing through its center)
##R## is radius of disk
##\sigma## is the uniform charge density per unit area of the thin disk
##\epsilon_{0}## is electrical permittivity of vacuum
The electric field strength at the center of a uniformly charged disk should be zero according to symmetry of concentric rings about the center, where each ring is contributing to the electric field at the center of the disk.

For a thin ring of uniform charge distribution the formula is ##E = \dfrac {1} {4 \pi \epsilon_{0}} \dfrac {Qx} {(R^2 + x^2)^{\frac {3}{2}}}##, where the electric field ##E## is at a point P that is a distance ##x## from the center of the ring and along the ring's axis. When we consider the center of the ring, then ##x =0## which gives us ##E = 0## at the center of the ring.
Thus, each concentric ring will contribute ##0## to the electric field at the center of the thin disk. Consequently, the electric field at the center of the thin disk must be ##0##.

However, I do see from the formula for a thin charged disk as given under the relevant equations, that the electric field at the center of a disk is found to be ##E = \dfrac {\sigma} {2 \epsilon_{0}}## when we substitute ##x =0## in the mentioned formula.

I am unable to understand the flaw in my logic.
 
Last edited:
Physics news on Phys.org
  • #2
Your logic is correct. The field will be zero.
The formula you quote only holds for ##x\neq 0##. It does not apply when ##x=0##. For an infinitely thin disc, the electric field is discontinuous at the centre of the disc. In practice, no disc is infinitely thin so we don't need to worry about that.

The reason the formula does not apply when ##x=0## is that we obtain it by integrating the formula for field from an infinitesimal ring, for ring radius ##a\in [0,R]##. The integrand for that is always finite if ##x>0## but if ##x=0## it becomes infinite at ##a=0## and the integral diverges. So the formula's derivation is invalid if ##x=0##. See here for a derivation of the formula for the disc. You can see how they use that integral over ##a##.
 
  • Like
Likes MatinSAR, PhDeezNutz and vcsharp2003
  • #3
andrewkirk said:
The formula you quote only holds for x≠0. It does not apply when x=0. For an infinitely thin disc, the electric field is discontinuous at the centre of the disc. In practice, no disc is infinitely thin so we don't need to worry about that.
Ok. Thanks for the excellent explanation.
It seems that if we plot a graph of ##E## vs ##x## for a thin charged disk then the the y-axis will be a vertical asymptote to the plot. Is that correct?
 
  • #4
vcsharp2003 said:
Ok. Thanks for the excellent explanation.
It seems that if we plot a graph of ##E## vs ##x## for a thin charged disk then the the y-axis will be a vertical asymptote to the plot. Is that correct?
It will have a stranger form than that: no asymptote. The function will tend to a finite nonzero limit, per the above formula, as ##x\to 0##. But the actual value of the function at ##x=0## will be 0, which is different from the limit. Effectively, it is the function specified by
$$f(x)
= \left\{
\begin{array}{ll}
-\dfrac {\sigma} {2 \epsilon_{0}} [1 - \dfrac {x} {(R^2 + x^2)^{\frac {1}{2}}} ] & x < 0 \\
0 & x = 0\\
\dfrac {\sigma} {2 \epsilon_{0}} [1 - \dfrac {x} {(R^2 + x^2)^{\frac {1}{2}}} ] & x > 0\\
\end{array}
\right.
$$
Note that not only is the function at 0 not equal to the limit, but the left and right limits also differ.
 
Last edited:
  • Like
Likes vcsharp2003
  • #5
andrewkirk said:
It will have a stranger form than that: no asymptote. The function will tend to a finite nonzero limit, per the above formula, but with ##x=0##, as ##x\to 0##. But the actual value of the function at ##x=0## will be 0, which is different from the limit. Effectively, it is the function specified by
$$f(x)
= \left\{
\begin{array}{ll}
-\dfrac {\sigma} {2 \epsilon_{0}} [1 - \dfrac {x} {(R^2 + x^2)^{\frac {1}{2}}} ] & x < 0 \\
0 & x = 0\\
\dfrac {\sigma} {2 \epsilon_{0}} [1 - \dfrac {x} {(R^2 + x^2)^{\frac {1}{2}}} ] & x > 0\\
\end{array}
\right.
$$
Note that not only is the function at 0 not equal to the limit, but the left and right limits also differ.
That is very beautifully explained. It makes complete sense now. Thankyou.
 
  • Like
Likes PhDeezNutz

Similar threads

  • Introductory Physics Homework Help
Replies
2
Views
390
  • Introductory Physics Homework Help
Replies
11
Views
2K
  • Introductory Physics Homework Help
Replies
12
Views
104
  • Introductory Physics Homework Help
Replies
17
Views
457
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
9
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
558
  • Introductory Physics Homework Help
Replies
26
Views
628
  • Introductory Physics Homework Help
Replies
2
Views
3K
  • Introductory Physics Homework Help
Replies
3
Views
807
Back
Top