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A unified approach towards spectral shifts in general relativity brings the cosmological and
gravitational redshifts within the same framework as the more familiar Doppler effect. This
approach was first proposed by Synge [Relativity: The General Theory (North-Holland, Amsterdam

1960)] and is described here in a more simplified form.

I. INTRODUCTION

The change of wavelength of an electromagnetic wave
from its value measured at the source to the value measured
at the observer is known as spectral shift. Quantitatively we
may define it by the parameter

Ao—As

Ag
where Ag=wavelength at the source and A o =wavelength at
the observer. It is customary to refer to the cases with z>0
as redshifts and those with z<<0 as blueshifts. This has ob-
vious reference to the shift of spectral lines in the visible part
of the spectrum, although in principle (and in practice), Eq.
(1) applies to any wavelength range.

In special relativity the most familiar example of spectral
shift is the Doppler effect. If the source S is moving away
from the observer O with a velocity v making an angle 6
with the outward radial direction from O to S (see Fig. 1) the
formula (1) becomes

3 1+ (v/c)cos 0_ 1+V cos 8 @
=i} 1=V

where V=uv/c, ¢ being the speed of light. Henceforth we
shall set c=1 and refer to V as the velocity of S relative to O.

It is possible to give a relativistically invariant form of Eq.
(2) as follows. As shown in Fig. 2, the world lines of O and
S are the curves o, s in the space—time diagram. Let us use
coordinates x*, with x=ct and x*(v=1,2,3) the three Car-
tesian space coordinates. The line element is

dS2= nikdxidxk7 77ik=diag(+1,“1,_1,_1), (3)

with x}, and x§ the coordinates of O and S on their world
lines.
If the light ray emitted by x} reaches x5, then

z

(1)

1+z

Ma(xp—x5) (x6—x5)=0. ()
Here and in Eq. (3) we are using the summation convention
which we shall employ whenever necessary in this paper.

Writing the four-velocities of S and O as Vi and V, and
differentiating Eq. (4) along the world lines with A7y, A7,

o S

Fig. 1. The Doppler shift formula (2) envisages the source § moving with a
speed v in an arbitrary direction making an angle @ with the radial direction
0s.
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as the elements of proper time along these respective world
lines, we get the following relation:

(X6 —x§) (VoA 1o~ VsA7s)=0.
Therefore, the Doppler effect formula becomes
UioVs

14z= 2= 5
z ATS U,-OV;)’ ()

where Ul (x})—x%) is a tangent vector to the null ray from
S to O. We will have occasion to refer to this formula later.

In general relativity we encounter two more examples of
spectral shift. In Fig. 3 we have S, a typical point on a spheri-
cal massive object of mass M and radius R and O is an
external observer at a coordinate radius > R. In this case the
gravitational redshift observed by O in the light received
from S is given by the formula

2GM 1/2 2GM 1/2
1+Z=(1— czr) /(1_?1—3.) . 6)

Here the radial coordinate is as given in the Schwarzschild
line element. This formula can of course be generalized to
other space—time geometries and in essence conveys the fact
that redshift occurs in the passage of light from a strong to a
weak gravitational field and blueshift occurs for passage in
the reverse direction.

The second context in which general relativity describes
spectral shift is cosmological. The simplest model of the ex-
panding universe is described by the Robertson—Walker line
element:

2

1—kr?

ds’=dt*—a*(1) +r2(d6*+sin® 0d¢?)|. (7)
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Fig. 2. In the flat space—time diagram o and s are the world lines of the
observer O and the source S. The dotted lines are null geodesics representing
signal propagation from the source to the observer.
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Here the parameter k=0,%1 denotes three possibilities for
spatial geometry: flat (k=0), closed (k= +1), and open (k
= —1). The function a(¢) denotes the (expanding) scale fac-
tor of the space. The coordinates (7,6, ¢) are constant for a
typical galaxy and in general define the so-called cosmologi-
cal rest frame. If S is the galaxy at (rg,65,¢5) and O is at
r=0, then the cosmological redshift is given by
a(to)
+F = —
1+z alts)’ ®
where tg=epoch of emission of the wave and ¢,=epoch of
reception. Figure 4 illustrates the scenario.

The way these formulas (1), (6), (8) are derived in most
relativity textbooks the reader tends to think of them as dif-
ferent unconnected phenomena. There have been discussions
in the literature relating the gravitational redshifts to Doppler
shifts in the context of the equivalence principle (see Refs 1
and 2 for example). However, as first shown by Synge? there
is an underlying unity behind these concepts which becomes
more apparent after the derivations to be described here. We
will first work out two specific examples and then prove the
theorem which covers the most general scenario.

II. COSMOLOGICAL AND DOPPLER SHIFTS

In the early days after the discovery of the cosmological
redshifts and Hubble’s law the observers stated the spectral
shifts in velocity units, v =cz, using the Newtonian Doppler
version of Eq. (2). The phrase “recessional velocity” applied
to galaxies is still used, although, as seen in Eq. (8) the
cosmological spectral shift does not arise from motion.

In fact, in general relativity one cannot talk of a velocity
of relative motion between two objects separated spatially
without paying due attention to nonlocality and the problem
it poses in curved space—time. Thus, given the two world
lines (see Fig. 5) o, s of particles with the world points O and
S on them connected by a light ray, what do we mean by the
velocity of S relative to O? (We assume as in Fig. 5, that the
observer O is seeing the source S.). Let V%, and V§ be the
tangent vectors at O and S to the respective world lines, with

ViVio=1, ViVi=1. )

Thus in their respective rest frames we have V3=1, Vi=1,
as the only nonzero components of velocity. What is the
relative velocity of S with respect to O? It is evidently not
determined by the special relativistic formula relating to Vi
and V5, since the vector V% at S does not transform as a
vector at O and vice versa for V. Nevertheless, a meaning
can be attached to a modified concept. We can parallelly
transport V5 along the null geodesic SO to O. Let this paral-

Fig. 3. The source S on the surface of a massive object of radius R emits a
signal to a far away observer O. This signal is redshifted due to the gravity
of the massive object.
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Fig. 4. The past light cone of observer O at epoch ¢, intersects the world
line of the source § at epoch 7. The cosmological redshift arises because in
an expanding universe the scale factor satisfies the inequality a(o)>a(z).

lelly transported vector at O be denoted by V’ Then we have
at O two velocities V%, and V; and we can associate a Dop-
pler shift to them. The question is: what answer do we get if
S and O are in their respective cosmological rest frames as
per the Robertson—Walker space—time?

This question can be answered by solving the relevam
equations for parallel transport which we now proceed to do.
First we need the affine parameter u along the null geodesic
I' connecting S to O and then set up the differential equation
of parallel propagation along it. Along the null geodesic, the
condition ds=0 leads to (with ¢=1)

dr dt

1—kr =—m' (10)

Fig. 5. The velocity vector at S, Vi is parallelly transported along the null
geodesic I’ from § to O where it takes the value V%. The spectral shift
phenomenon can be described in terms of the Doppler effect between the
velocity vectors Vi, and Vi
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To determine u, we use the timelike component of the geo-
desic equations
d*x’ ; dx* dx’
@ MG
For notation see Narlikar.* The coordinates x’ are, respec-

tively, ¢, r, 6, ¢. After computing I'}; we finally find that for
i=0, Eq. (11) gives

d*t aa (dr)z_

=0, i=0,1,2,3. (11)

a2 12 \dn (12)

Using Eq. (10) to eliminate (dr/du), we get a first integral of
Eq. (12) as

1 dt

P constant A (say). (13)
Therefore, from Eq. (10)
1 dr
1-kr H=—A' (14)

This determines u as a function of ¢. It is convenient to fix
u so that u=0 at S and u=1 at O. Thus the constant A is
given by

A= f:o A (15)

s a(t)

We define the tangent vector to I by dx'/du=
Thus from Eq. (14) we get,

Ui(u)=A[a(t),—J1—kr%,0,0], (16)
with U'(1)=A[a(t,),—1,0,0].
Let the vector V§ become V'(u) at an intermediate point u,
with Vi(1)= Vs Then under parallel propagation
Vi(u)V,(u)=constant, U’(u)Vy(u)=constant. (17)

We therefore have the following relations [keeping in mind
the fact that V'(u) has only the ¢, r components nonzero]

U'(u), say.

ViVis=1, ULVis=UsVis. (18)
These relations become

(V§)?—a*(10)(V5)*=1, (19)

a(to)Vs+a*(to)Vi=al(ts). (20)

Now, in the local inertial rest frame at O, the velocity
vector V5 takes the form (y, yV 0 ,0) where V is the radial
three-velocity and y=(1—V?)~"/2, How is V related to V1?
Since the radial proper distance at O is |a(ty)dr|, and the
radially outward direction from S is radialty inwards at O,
the above relation is

yV=—a(ty)V;. (21)

Thus the relations (19) and (20), with Eq. (8) for a(zp)/a(ts)
and Eq. (21) above for V give the result

1+v

1—_‘—/. : (22)
We therefore find that the parallelly transported velocity

vector of a distant source does yield the correct Doppler

velocity in the rest frame of the observer. The relation (2) for

radial recession therefore agrees with the cosmological red-

shift formula (8).

1+2z=
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We next look at the gravitational versus the Doppler red-
shifts.

III. THE GRAVITATIONAL VERSUS DOPPLER
SHIFTS

The expanding universe is a dynamical concept and hence
the previous result, though nontrivial is not unexpected. The
gravitational redshift, however, arises in a manifestly static
line element. Hence it is not clear what the corresponding
situation would be in this case. Specifically, the formula (6)
arises from the line element

ds’=e’dt*— e~ Vdr*—r{(d6*+sin® 0d ¢?), (23)
where, with c=1, x°=1¢, x'=r, x2=0, x>= ¢ we have
2GM
=1—T for r=R. (24)

We now have Vi,=(e 7012,0,0,0), Vi=(e™ "52,0,0,0),
with vo=v(r), vs¢= ¥(rg) with ro>rs=R. [In formula (6)
we took r¢=R for light coming from the surface of the mas-
sive object.] In this notation the formula (6) is

14+z=¢lP07 )2, (25)

Along the null geodesic I' connecting S and O, we have,
the tangent vector U'=dx'/du with the only nonzero com-
ponents satisfying the relations

dt dr A 2

e’ T du (copstant), 26)

u being the affine parameter chosen so that #=0 at S and
u=1 at O. This determines A completely as

A=(ro=rs). (27)

Let Vs, transported parallel to itself along I', have the
value V'(u) at any u in the range O<u<1. Let Vi(1)=VL.
Then, the unit magnitude of V* gives

(V§)2e*o—(Vg)?e vo=1. (28)
Similarly, constancy of U'(u)V{u) gives
Vi—Vie vo=¢~sn, 29

Again, we interpret f/fq as a four velocity (y,yV,0,0) in
the local inertial rest frame at O. Since the proper radial
distance is given by |e *0/2 dr| and the proper time by
|e?or2dt| we have

Vs
V=—e %0 — 30)
Vs
[negative sign because as we found for Eq. (21) the radially

outward direction from S is inwards at O.]
Write Eq. (29) in the form

Vierorn—Vie vor=(1+z) (31)
and divide Eq. (28) by Eq. (31) to get
Vievon+ Vie Yon=(1+z)"1, (32)

It is easy to see that the relations (30)—(32) together give
_(1+2)—(1+2)7!
T (1+)+(1+2)7 "

(33)
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Fig. 6. This is a generalization of Fig. 2 to arbitrary Riemannian space—
times. Thus the dotted lines are null geodesics in a general Riemannian
space—time. )

again giving the Doppler formula applied to the parallelly
transported source velocity

1+V

—. (34)

+ 7=
1+z —v

IV. THE GENERAL RULE

We have thus established the equivalence of the cosmo-
logical and gravitational spectral shifts with the Doppler one
provided we parallelly transfer the source four-velocity vec-
tor along the null geodesic to the observer. We now show
that these results are special cases of a general rule.

To see the unifying theme we refer to the textbook on
general relativity by Synge! which discusses these issues at
length. Figure 6 illustrates the general scenario for spectral
shifts. Here o and s are two world lines of observer O and
source S, respectively.- Suppose further that the passage of
light signals from S to O is described by a series of null
geodesics connecting their respective world lines. We will
use a parameter v to label a typical null geodesic. Let $; and
S, be two neighboring world points on s and O, and O, the
corresponding world points on o where the null geodesics
from §; and S, meet it. We will assume the parametric val-
ues for these geodesics to be v,v+Av, respectively, where Av
is infinitesimally small. Let u denote the affine parameter on
each of these geodesics chosen so that #=0 on s and u=1
on 0. Also we will denote by 7, and 7¢ the proper times of
the observer and the source, respectively.

Let Vg and V}, be the respective four-velocity vectors of
the source and the observer at S, and O, respectively. Then
e

d To

dx'

Vi=g.- (35)

5 9

are the tangent vectors to s and o at these respective points.
Now let A7, and A7g be the elements of proper time

corresponding to the segments 0,0, and SS,. Then the

spectral shift z is given by
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1+ A To
2= — Are’ (36)
Following Synge we define a world function for a pair of
points O and S through an integral defined along the geode-
sic joining them

1 uo  ox' ox’
I(v)= E(uo—us)f du. (37)

o 8

I(v) is thus defined for any of the geodesics in the family
linking points on ¢ and s. We have taken u;=0, up=1 so
that

I(v)=lf1gi~a—)ﬂ-(k—]du. (38)
2 Jo®Y du du
Synge has proved the following relations:

al dx’ ol ax’

Fszgijal—s Woz“gijﬁos (39)

which hold even for null geodesics. Now since the geodesics
8,0, and S,0, are null, the quantity /(v) does not change
between v and v+ Av. Hence, we have

dl dx’ N ol dx'
ox' dv o ox' dv s

>

ie.,
UioVoAT1o—UisVEAT5=0. (40)

The U;g and U;, are the tangent vectors to the typical null
geodesic connecting S to @ at its respective end points. Us-
ing Eq. (36) therefore we get

UisVs

UioVo'
Further, since, along a geodesic the scalar product of the
tangent vector and a parallelly propagated vector is constant,

we may transport V& parallelly to O where it takes the form
V% and thus obtain from Eq. (41),

UiOVS
UioVo

However, Eq. (5) of special relativity tells us_that this is
the Doppler shift of a source with four-velocity VS observed
by an observer with the 4 velocity V%, with U, the direction
of the null vector connecting the source to the observer as
measured by the latter. This establishes the general result
stated earlier.

1+z=

(41)

1+4z= (42)

V. CONCLUSION

In his book (op. cit.) Synge has emphasized the unity be-
hind these redshifts. We quote his remarks from Chap. III,
Sec. 8 (pp. 122 and 123):

“It is clear that in general the observer of a luminous
source will see a spectral shift--- In attributing a cause to this
spectral shift, one would say, -~ that the spectral shift was
caused by the relative velocity of source and observer; it is in
fact a Doppler effect in the original sense of the term. It is
not a gravitational effect, because the Riemann tensor ap-
pears nowhere in our formulae.”
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In general relativity gravitational effects (as seen near a
massive object or in cosmology) are inextricably mixed with
local motions. As Synge observes, a truly gravitational effect
should involve the Riemann tensor, which the formulas (41)
or {42) do not. Thus, in principle, we could have z#0 from
these formulas even in flat space—time scenarios. For ex-
ample, the Robertson—Walker model with k=—1 and
a(t)=t is flat but has a cosmological redshift.

This result derived by Synge is, unfortunately, not well
known even among the community of general relativists to-

Synge had highlighted. The purpose of this communication
was to bring the result to the notice of modern workers in
relativity with the help of explicit examples familiar to them.
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Conventional discussions of Maxwell’s equations in free space have for many years taken a
historical approach starting with electrostatics and magnetostatics, and have taught us that the
sources of E are electric charge and B, and the sources of B are electric current and E. However, a
direct dynamic reading of Maxwell’s differential equations leads unquestionably to the surprisingly
different conclusions that the sources of E are electric current and curl B, and the single source of
B is curl E. In this dynamic reading of Maxwell’s equations, electric field is generated locally by
electric current, and fields propagate away from the current source by the dual mechanisms of
curl E generating B locally and curl B generating E locally.

I. INTRODUCTION

Conventional discussions of Maxwell’s differential equa-
tions in free space

div E= ﬁ, curl E=—B, 1
€0
div B=0, curl B=uy(j+ €E), )

follow the historical development of electromagnetism, pro-
ceeding from electrostatics (Coulomb) and magnetostatics
{Ampere and Biot—Savart) to Faraday’s induction and finally
to Maxwell’s displacement current and field propagation. It
seems to follow naturally from electrostatics and magneto-
statics, that charge and current are the sources, respectively,
of electric and magnetic field. It again seems natural to in-
terpret the contributions of Faraday and Maxwell by saying
that electric field is generated also by time varying magnetic
field, and that magnetic field is generated also by time vary-
ing electric field. Finally, recognizing the neat fit between
these interpretations and the mathematics of the Helmholtz
theorem, which shows that a vector field is determined by its
divergence and its curl as sources of the field, it is no wonder
that most physicists trained in this tradition have had no
reason to question these “natural” teachings, or to look for
alternative interpretations. The Helmholtz theorem'

’

r-r
V(l‘,t)= div V(l",t)mdl"
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!

+f curl V(r',#) X 4'71'|l‘——l"|3dr (3)

expresses a vector field V(r,t) as a sum of an irrotational
(Coulomb-type) field with source density div V, and a sole-
noidal (Biot—Savart-type) field with source density curl V.
The integrals in Eq. (3) extend over all space.

In this paper we describe a surprisingly different interpre-
tation, one that follows naturally by reading Maxwell’s dif-
ferential equations directly as a set of local dynamic field
equations. In this reading, the instantaneous state of the elec-
tromagnetic field is described by the values of E(r,) and
B(r,t) at all points of space, and the rate of change of the
state, described by E and B, is determined by the instanta-
neous values of the fields and of the current distribution j,
through the two curl equations of Maxwell,

. 1 1

E=——j + curl B, 4
€9 J €olbo )

B=—curl E. (5)

We can imagine numerically integrating these equations,
time step by time step, using

E(r,t+ 6t) = E(r,t) + Sg(r,t) 8¢,
B(r,t+ 6t)=B(r,t) + Sg(r,1) 6t
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