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Abstract

A power system is a large-sgcale, nonlinear,

and multivariable system having groups of genera-
tors, buses and branches. Linearization of this
nonlinear multivariable system is carried out
around an operating point. The linear regulator
has disadvantages that it is generally not valid
for large disturbances and that a large amount of
computations and information transmission are
necessary for reconstructing linearized model at
each operating point. The proposed method aims at
solving the difficulties and realizing the design
of the multivariable feedback control system. A
nonlinear approximate model is constructed which
retains nonlinearity of the controlled power
system dynamics which retains the interactions
between the state variables, etc. A nonlinear-
regulator is designed for the model which deter-
mines suboptimal policy under a specific cost
function. The primary purpose of the proposed
method is to establish a governor and exciter
control system which is adaptable to the large
disturbances and the changes of operating points,
and successful results are obtained.

INTRODUCTION

The control of power systems consisting of inter-
connected networks of transmission lines linking
generators and loads 1s an important problem since
the power system is a large scale non-linear multi-
variable system. Traditionally, the problem of
design of power systems is split into two separate
problems.
control systms and governor-control systems are
carried out independently. Excitation controllers
are designed assuming constant mechanical torque
input for the regulation of terminal voltage and
improving generators stability limit, and the
governor control system is designed assuming cons-—
tant flux linkage for power frequency regulation
[1,3]. An integrated excitation and governor
controller design based on the complete model is
more effective in improving the performance of a
power system. However, increased order and
nonlinearity pose difficulties in designing an
integrated controller.

Problems arise from how to formulate the physical
phenomena and solve the nonlinear multivariable

problems. 1In dealing with the kinds of problems,
linearization is carried out around an operating
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point and problem oriented aggregation is performed
to construct a linear low order model. A desired
control is then determined by the control system
designed for the multivariable space of the
simplified model.

During the last decade, research work has been in
progress in the area of power~system-controller
design, and considerable work has been done using
linear dynamic system theory, the output feedback
control, the multivariable root locus, and the
domain separation. For large perturbations of
state variables, the linear-model representation is
not adequate, and there is need of nonlinear repre-
sentation of synchronous machines in control system
design.

Recently, some attempts have been made to design
controllers for the nonlinear models of power
systems. Using a dynamic programming approach, an
excitation and governor controller was designed. A
quasilinearization technique was used to obtain a
nonlinear excitation controller. Nonlinear optimal
control theory and identification methods were used
to obtain a nonlinear output feedback excitation
controller. [Dynamic sensitivity approach was used
to design a linear excitation and governor
controller [4-11]

The proposed method aims at solving the difficulties
and realizing the design of the nonlinear multivari-
able integrated excitation and governor feedback
control system so that the closed-loop system is
stable in a large region in state space, and asymp-
totically tracks the nominal terminal voltage, fre—
quency, and tie-~line power flow under load and
parameter variations. The nonlinear approximate
model which retains the nonlinearity of the cont-
rolled system is first developed then a nonlinear
regulator is designed for the model. Then the
control policy is determined which is suboptimal
obtained on the basis of the quadratic index of the
performance for one particular condition under s
specific cost function. The developed theory is
applicable to multimachine cases, especially by
establishing a suitable decentralized control

system theory for power systems.

PROBLEM FORMULATION

The system model used as a basis for the development
of the present paper is shown in Fig. 1. It comp-
rises a single synchronous machine feeding into an
infinite bus, a prime-mover representation and an
excitation system. The generator is represented by
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by a nonlinear third-order model based on Park's
equations with , and § s the three state
variables.

The synchronous machine equations are:
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The exciter voltage regulator and the governor
system equations are:
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These equations are presented in a state variable
form of

Moe
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1 2
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where
x) = S, X, =W S, X, = wf, X, = Ve,
x5 = Vg, Xy =g, X7 = B and Xg = h.

The values of Al to A21

(1) to (9) and the machine parameters given in the
Appendix

are obtained from equations

NONLINEAR REGULATOR THEORY

The use of the nonlinear regulator theory, sugges~-

ted by Wernli and Cook, is applied to the multi-
variable problem defined previously.

Consider the nonlinear system given in Eqn. (10)
Z(t) = £ (z, W, t) (10)

For the following cost function

5=5 Izt Qz) +uo o | (1)
G

The suboptimal control law is given by

1

Wiz,t) = - R B (2w, 0) ] EiLi(z,w,t)|Z (12)

i=0

PROPOSED NONLINEAR APPROXIMATE MODEL

It is impossible to use the theory of nonlinear
regulator with the existence of the Sin and Cos
terms in equations (2) and (3). Therefore, it is
proposed the 2nd and 3rd approximate functions of
Sin and Cos, which can cover the realistic operat-
ing region. Considering the magnitude of distur-
bances to which the proposed control scheme is
applied, the variations in the rotor angle ¢ (Xl)

for Sin x Sin 2x, and Cos x, are thought to be

e 1 1
within a region of lO and H!, and by using the
least square method, these terms can be represented
as:

Sin x, ~ === ]20 (x, - 1)
1~ 5 %
I
Sin 2x. L2 ox - My(2x. - 2I) (13)
1 4H6 1 1

and Cos X, ~ Sin (xl 4) = glé—(x ‘)(X - **)

Substituting these terms in tEe state equatlons,

the ;2 and §3 equations are given as:

315

. 120
X2~A1X2+A2x3‘——§-xl(xl—H)[+A ——E'ZX (Zx -1).
11 411
(le—ZH) +A4X6+A Xg (14)
315
| == (x+—><x-v)l (15)

X3—A6x3+A X +A8 41

Taking the Taylors Series expansion of Egn. (9)
around the arbitrary operating points

o o
x. and u, , it follows:
i i

. 2
Ax—[AO+AA1(AX1)+AA3(AXB)+AA11(Axl)1Ax+BOAu (16)

where AO is constant part given by Eqn. (17), AAl
(AXI) is the first term of the variable part and a

function of Ax given by LEqn. (18), AAS(AX3> is

l’
the second term and is a function of AX3, given by

Eqn. (19) and All(AXi) is the third term, 1is a
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function of xi , given by Eqn. (20). BO is given and

by Eqo. (21). ; oo oo A, 0 00
~ - B~ = (21)
o 1 0 o o o 0o 07 o fo 000 0 0 A, 0
of of 1 -
A R T VI RV
le 1 ox, 4 5 { For comparison, the linearized model is given
e > below:
3,0
(Bxl 0 A6 A7 v 0 0 v i Ax = A Ax + B Au (22)
Ag= (17,
where
0 0 0 A9 AIO 0 0 0 - .
1 0 1 0 0 0 0 ¢ 0
0 0 0 0 A11 0 0 0 }
ta_cosx. x0
: .
O Ay 0 0 0 Ay A O P2 U 3 asind® 0 0 A, 0 A
+2A C052xo L 2 1 4 2
0 0 0 0 0 0 Al6 0 3 1
0 A, O 0 0 A, 0 Al A= A sinxd 0 A A0 0 0 0 |23
N 20 19 18| ATy 6 7
0 0 0 A9 AlO 0 0 0
T o0 0 o0 00 0 0 0 0 0 0 0 A, 0 0 0
82f Bzf 0 A 0 0 0 A A 0
%( 22) 0 (§;_§§‘>O 00 0 0 0 14 13 715
9x 1773 0 0 0 0 0 0 A, 0O
16
X a2f3 L 0 A20 0 0 O A19 A21 A18
AL (Bx Y=hx v |=( } 0 0 0 0 0 0 0](18), .
1 1 1 ]2 5 2
# and B = B, (24)
v 0 0 o 60 00 Here, three models have been exercised namely,
0 0 0 00 0 0 O Non-Liéear Model, presented by Eqns. (19), Nonlinear
! Approximate Model, presented by Eqns. (9), (14),
(15), (17-21), and the Linearized Model expressed
0 0 0 0.0 0 00 by Eqns. (22-24).
0 0 0 0 0 0 00 Figure 2 shows the angular velocity courses of the
0 o 0 0 0 0 0 0 autonomous system for a specific initial condition
_ | value
_ x(0) = col. [0 1.0 10.5 1.05 0 0 0 0]
AAB(AX3)~AX3 . 0 (19), - -
at the following operating conditions:
o 0 0 0000 0]
X?=1,0, Xg=1.0, x2=10.5, X2=1-05, Xg=0, X2=O,
3 3
37 f. o7t 0_ 0_
ML Dyt |50 0 L2430 5 g0 0 0l 20y,  ¥y0 @nd %70
11 1 1 13! BXB 2 B(BBX
1 1773 Comparing the results of the 3 models, we can
83f observe that the nonlinear approximate model retains
lﬁ( 3)0 o o 50000 the dynamics of the nonlinear model better than the
31! 3 linearized model on the whole. The difference is
*1 particularly clear from the magnitude of the
0 0 0 00000 ogscillations.
0 0 0 00000 DESIGN OF SUBOPTIMAL NONLINEAR REGULATOR
0 0 0 00000 To design a suboptimal nonlinear regulator for the
nonlinear approximate model derived previously, it
0 0 0 00000Q is required to determine the suboptimal control law
which minimizes the following cost functional.
_ 0 0 0 00000
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J= % f[Ax(t)TQAx<c>+Au(t)TRAu(tﬂdt

0

(25)

where the assumed weighting matrices Q and R are
as follows:

Q =TI, (Unit matrix of 8 x 8)

8

and R = 1

5 (Unit matrix of 2 x 2)

Rewriting Eqn. (16) as follows:

Ax = [A + ]

xo= [A+ DA(X)] Dx + B fu (26)
Taking up to the second term of Eqn., (12) for
convenience the desired control law v is deter-
mined as follows:

-1 TR
bu = R B |1y L) (80)] Bx (27)
where LO and Ll (Ax) are given as:
~0.215 0.041 -0.121 0.101 0.252 -0.014
Y| 0.042 —0.007 0.106 -0.046 -0.112  0.099
0.086  0.115
-0.023  0.061
f0.006 -0.001 -0.035 =0.001 -0.008
Ll(Ax)=Axl
0.018 -0.000 0.028 =-0.003 -0.014
~0.003 0.062  0.009
+0.003  0.045  0.009]
0.065 0.012 0.010 0.008 0.062
+AxT .
-0.061 ~0.006 =-0.030 -0.002 ~0.001
0.001  0.003  0.006
-0.003  0.005 0.002

ADAPTABILITY TO LARGE DISTURBANCES AND
CHANGES OF OPERATING POINTS

For large disturbances, the nonlinear regulator has
given much better results than the linear one. For
the changes of operating points, the first point
which is the initial is used to construct the
nonlinear approximate model and the nonlinear regu-
lator is designed as the first state, and applied
is the second state. The values of these two
states are given below.

(1) :
First state XO = col.[p.98 1.0 9.5 1.02
0 -0.01 0 0]
L@
Second state X = col.[0.945 1.0 8.2 1.05
-0.01 =~0.02 0 -0.03]
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The response curves of the rotor angle for a speci-
fic initial value x(0)=col.‘l.0 1.0 10.5 1.05

0 0 0 O[. It is clearly shown that the proposed
regulator is superior than the linear one.

Figure 4 shows the controls u, and u, for the three
designs. Figure 5 shows the States Obtained when
these three controls are applied to the system.
From Figs. 4 and 5, it is clear that the nonlinear
regulator gave the solution very close to the
nonlinear approximate model while the linear
solution is quite away from the nonlinear one.

CONCLUSTONS

A linear control strategy does not guarantee desir-
able performance unless the system with the proposed
strategy is analyzed for its stability. The primary
purpose of this work was to construct and design a
multivariable control system consisting of governor
and exciter control systems which is adaptable to
large disturbances and changes of operating points,

‘to obtain a better dynamic response and to increase

the damping torques. As seen from the results, the
feedback gain of the monlinear regulator is a kind

of dynamic gains, and from that sense the proposed

system 1s said to be a more advanced regulator

than the conventional linear ones.
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APPENDTIX

The following numerical values are used for the

system variables:

x, = 1.0 x, = 0.5 x = 0.6 T = 10.0 T =0.20
d d o s
M= 5.0 w =1.0 uo= 2.5 T = 0.25 u=2.0
0 e e S
o = 0.45 T =0.10 u =1.0 T =1.0 T =0.5
g a a 0]
k., =1.67 k, = -1.52 %k, = 0.217 and v = 1.05
1 3 o)
1 2 -t p
" w® bk
= £rtgp 140.5 t
Vo = 5P
u
a
< U,
1+ ta P
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Figure 1. Block diagram of model System.
Nonlinear Model
10t Nonlinear Approx.Model

Linear Model

{OFS/0R) ALIDOTHA MVINONY

s -
-

2.5
TIME IN SECONDS

3.0

Figure 2.

68

Effect of nonlinear approximate model.
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