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2.5.3. GVD through Angular Dispersion—General

Angular dispersion has been advantageouslv used for a long time to resolve
spectra or for spectral filtering. utilizing the spatial distribution of the freauencv
components behind the dispersive element (e.g.. orism. grating). In connection
with fs ontics. anegular dispersion has the interesting pronertv of introducing
GVD. At first glance this seems to be an undesired effect. However. ontical
devices based on angular dispersion. which allow for a continuous tuning of the
GVD can be designed. This idea was first implemented in Treacv [281 for the
comporession of chirped pulses with diffraction eratines. The concent was later
generalized to orisms and prism seauences [291. Simple expressions for two
and four prism seauences are given in [30.311. From a general noint of view.
the diffraction nroblem can be treated bv solving the corresponding Fresnel inte-
orals [28.32.331. We will sketch this nrocedure at the end of this chaoter. Another
successful anoroach is to analvze the seauence of ontical elements bv rav—ontical
techniaues and calculate the ontical beam path P as a function of . From our
earlier discussion we expect the response of anv linear element to be of the form:

R(Q)e VD 271

where the phase delav W is related to the ontical nathlensth Py through

Q
W) = ZPor(Q). (2.72)
C

R(Q) is assumed to be constant over the spectral range of interest and thus will
be neglected.

We know that nonzero terms [(d"/d Q™ ¥ # 01 of order n > 2 are responsible
for changes in the comnolex pulse envelooe. In particular

d? 1 _dpP d*p A d’p
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= (2.73)
dQ? c dQ2 dQ? 2mc? da?

is related to the GVD narameter. We recall that. with the sien convention chosen

in Ea. (2.71). the phase factor W has the same sign as the phase factor kL.

Consistent with the definition eiven in Ea. (1.117) a positive GVD corresponds
i) ; ; Lk )

to 955 > 0. In this chanter. we will generallv exoress (=5 in fs”.

The relation between angular disnersion and GVD can be derived through the
following intuitive anoroach. Let us consider a light rav which is incident onto an
ontical element at point O. as in Figure 2.22. At this point we do not specifv the
element. but iust assume that it causes angular dispersion. Thus. different spectral
components originate at O under different aneles. within a cone reoresented bv the
patterned area in the figure. Two ravs corresponding to the center freauencv w, of
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Figure 2.22 Angular dispersion causes GVD. The solid line in the middle of the figure reoresents
the aneular dispersive element. nroviding a freauencv-denendent deflection of the beam at the point
of incidence O. The different freauencv comoonents of the pulse soread out in the patterned area.

the spectrum. 7. and to an arbitrarv freauencv Q. 7q. are shown in Fig. 2.22. The
respective wavefronts S are labelled with subscrint “0” (for the central freauencv
wg) and “Q” (for the arbitrarv freauencv Q). The planes Sq. So and Sg,. S
are nernendicular to the rav direction and reoresent (plane) wave fronts of the
incident lieht and diffracted light. respectivelv. Let Py be our noint of reference
and be located on 7y where OPy = L. A wavefront ng of 7o at Pq is assumed to
intersect 7y at Pg. The ontical pathlength OPgq is thus

OPQ = P()[J(Q) = P()L((x)g\ cosa = Lcosa (2.74)

which eives for the phase delav

Q Q
W(Q) = —Por(2)= —Lcosa (2.75)
c c

The disnersion constant responsible for GVD is obtained bv twofold derivation
with respect to Q:

wy

(2.76)
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where sin @ = 0 and cos « = 1 if we take the derivatives at the center freauencv of
the pulse. 2 = wy. The auantitv (da/d2)l,, . responsible for aneular dispersion.
is a characteristic of the actual ontical device to be considered. It is interesting to
note that the dispersion parameter is alwavs neegative independentlv of the sien
of da/d$2 and that the dispersion increases with increasing distance L from the
diffraction noint. Therefore angular dispersion alwavs results in negative GVD.
Differentiation of Ea. (2.76) results in the next higher dispersion order

PR L da 2 do d?a

— =—-—— cosa¢ 3 — +3Q——

a3, c s dQ dQ?
42 o da 3

+sineg 3— +Q— —Q —
dQ? a3 aQ

my

3L da * do d’a

— 4+ Q—— (277
c dQ dQ dQ?

wy

where the last expression is a result of a(wy) = 0.

The most widelv used ontical devices for angular dispersion are prisms and
gratings. To determine the dispersion introduced bv them we need to specifv not
onlv the quantitv a(2) in the expressions derived previouslv. but also the ontical
surfaces between which the path is being calculated. Indeed. we have assumed
in the brevious calculation that the beam started as a nlane wave (plane reference
surface normal to the initial beam) and terminates in a plane normal to the rav at
a reference ontical freauencv wy. The choice of that terminal plane is as arbitrarv
as that of the reference freauencv wy (cf. Section 1.1.1). After some pronagation
distance. the various spectral component of the pulse will have separated. and a
finite size detector will onlv record a portion of the pulse spectrum.

Therefore. the “dispersion” of an element has onlv meaning in the context of
a narticular aoolication. which will associate reference surfaces to that element.
This is the case when an element is associated with a cavitv. as will be considered
in the next section. In the following sections. we will consider combinations of
elements of which the angular dispersion is compensated. In that case. a natural
reference surface is the normal to the beam.

2.5.4. GVD of a Cavitv Containing a Single Prism

Dispersion control is an important aspect in the develooment of fs sources.
The most elementarv laser cavitv as sketched in Fieure 2.23 has an element
with aneular dispersion. The dispersive element could be the Brewster anele
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Figure 2.23 Example of a cavitv with a single right angle prism. The side of the right angle is
an end mirror of the cavitv. The cavitv is terminated bv a curved mirror of radius of curvature R.
at a distance L from the Brewster angle exit face of the orism. Stabilitv of the cavitv reauires that
L + AB/n < R. Translation of the prism allows for an adiustment of the pathleneth in glass L,. The
inset shows that this calculation aoplies to a svmmetric cavitv with a Brewster angle laser rod and
two spherical mirrors.

laser rod itself. The cavitv will be tvpicallv terminated bv a curved mirror.
The two reference surfaces to consider are the two end mirrors of the cavitv.
We have seen that negative GVD is tvpicallv associated with angular dispersion.
and positive GVD with the propagation through a glass prism or laser rod.? One
might therefore expect to be able to tune the GVD in the arrangement of Fig. 2.23
from a negative to a positive value. An exact calculation of the freauencv depen-
dence presented shows that this is not the case. and that the GVD of this cavitv
is alwavs positive.

A combination of elements with a tunable positive dispersion can also be
desirable in a fs laser cavitv. We will consider the case of the linear cavitv
sketched in Fie. 2.23. whose GVD can be determined analvticallv.

The cavitv is terminated on one end bv the pnlane face of the orism. on the other
end bv a spherical mirror of curvature R. The prism—mirror distance measured
at the central freauencv wy is L. The beam originates from a distance /& from the

91t is eenerallv the case—but not alwavs—that ontical elements in the visible have positive GVD.
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anex of the nrism (anele «). such that the pathleneth in elass can be written as
L, = htan «. For the sake of notation simpolification. we define:

htan o

a =
C

L
b=—
2

L
1—— . (2.78)
R

The total phase shift for one half cavitv roundtrip is W(Q2) = W4p(Q) + W (Q).
The phase shift through the elass here is simplv —k(Q)L, = —W4p(Q). with
W,p(2) given bv:

dw 1 d>v. )
VgD =W+ — AQ+= — (AQ*+---
ds 2 dQ?

wy wy
-~ dn N 1 _dn d*n~ 5
ARVy+a Q— +n() AQ+-a 2— +Q— (AQ).
d2 2 d2 dQ?

wy wy

(2.79)

where AQ = Q — w,. For the path in air. we have a phase shift —kBC =
—Wpc(Q). with

L 2 Q- 2"
AG° = — L-+bAO" . (2.80)
C

1/ (Q)—QiL—l—L 1
Bc T 2 R

where A0 is the denarture of dispersion anele from the diffraction anele at wy.
Within the small anele approximation. we have for A6:

sina dn(2) dn(2)
A~ AQ =AQ .
cosf3 dQ2 a2

(2.81)

The last eaualitv (sin @ = cos 63) anolies to the case where 03 eauals the Brewster
anele. The GVD dispersion of this cavitv is thus:

4w d>w d>w d d?
— = B4 BC _4 22 il
ag? ,,  de* 4 aQ - d@?
2
2bwy dn

— (2.82)
c aQ o0
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or. using the waveleneth denendence of the index of refraction. and takine into
account that. for the Brewster nrism. tan o = 1/n(wy):

d>w ho A ,d%n A dn ?

(2.83)

- — + h— —
dQ? o nc 2mc dr? Iy wc?  di "y

The stabilitv of the cavitv reauires that R > L and that the coefficients a and b
be positive. In the visible ranee. most elasses have a positive GVD (k" > 0 or
d*nld)\* > 0). Therefore. in a cavitv with a sinele prism as sketched in Fie. 2.23.
the GVD is adiustable through the narameter 4. but alwavs nositive.

The calculation aoplies to a simple solid state laser cavitv as sketched in the
inset of Fig. 2.23. with a Brewster anele laser rod. The contributions to the dis-
persion from each side of the dash—dotted line are additive. Even in this simple
example. we see that the total dispersion is not onlv because of the nronagation
through the elass. but there is also another contribution because of angular dis-
persion. It is interesting to compare Ea. (2.76). which gives a general formula
associated with angular dispersion. with Ea. (2.83). Both expressions involve the
sauare of the angular dispersion. but with ooposite sign.

Femtosecond pulses have been obtained through adiustable GVD compensa-
tion with a single prism in a dve ring laser cavitv [341. As in the case of Fig. 2.23.
the snectral narrowing that would normallv take place because of the aneular dis-
persion of the prism was neutralized bv having the anex of the prism at a waist
of the resonator. In that particular case. the adiustable positive dispersion of the
prism provided pulse comoression because of the negative chirp introduced bv
saturable absorption below resonance. as detailed in Chaoter 5.

2.5.5. Group Velocitv Control with Pairs of Prisms

2.5.5.1. Pairs of Elements

In most annlications. a second element will be associated to the first one. such
that the aneular dispersion introduced bv the first element is compensated. and all
freauencv compoonents of the beam are parallel again. as sketched in Figure 2.24.
The elements will generallv be orisms or gratings.

As before. we start from a first reference surface A normal to the beam.
It seems then meaningful to chose the second reference surface B at the exit of
the svstem that is normal to the beam. There is no longer an ambiguitv in the
choice of a reference surface. as in the orevious section with a single dispersive
element. At anv particular freauencv. Fermat’s orincinle states that the ontical
paths are eaual from a point of the wavefront A to the corresponding point on the
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Reference
2" Element pjane B

(reversed)

Reference
plane A 15! Element

Figure 2.24 Pair of elements with angular dispersion arranged for zero net angular disoersion. The
elements are most often prisms or eratings.

wavefront B. This is not to sav that these distances are not freauencv denendent.
The spectral components of the beam are still separated in the transverse direction.
For that reason. a pair of prisms or gratings provides a wav to “manioulate” the
pulse spectrum bv spatiallv filtering (amplitude or phase filter) the various Fourier
components.

2.5.5.2. Calculation for Matched Isosceles Prisms

One of the most commonlv encountered cases of Fig. 2.24. is that where the
two angular dispersive elements are isosceles prisms. Prisms have the advantage
of smaller insertion losses. which is particularlv important with the low gain solid
state lasers used for fs aoolications. To compensate the angular dispersion. the
two prisms are put in ooposition. in such a wav that. to anv face of one prism
corresponds a parallel face of the other prism (Figure 2.25).

In this section. we consider onlv the GVD introduced bv the prism seauence.
The associated pulse front tilt and the effect of beam divergence will be discussed
in Section 2.4 using wave ontics. There are numerous contributions to the groun
velocitv dispersion that makes this problem rather comnlex:

(a) GVD because of pronagation in glass for a distance L

(b)Y GVD introduced bv the changes in ontical path L in each prism. because
of angular dispersion

(¢) GVD because of the angular dispersion after one orism. nronagation of
the beam over a distance £. and as a result pronagation through different
thicknesses of glass at the next prism.
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Figure 2.25 Tvoical two prisms seauence as used in fs laser cavities. The relative position of the
prisms is defined bv the distance ¢ and the spacing s between the parallel faces OB and O’B’. The initial
beam enters the prism at a distance OA = a from the anex. The distance #, between the parallel faces
OA and O'A’ is ty = tsina + scosa. The solid line ABB’A’D traces the beam path at an arbitrarv
freauencv Q. The beam at the freauencv upshifted bv d2 is reoresented bv the dashed line. The
dotted line indicates what the optical path would be in the second prism. if the distance BB’ were
reduced to zero (this situation is detailed in Fig. 2.26). D is a noint on the phase front a distance u
from the anex O’ of the second prism. In most cases we will associate the beam path for a rav at
with the path of a rav at the center freauencv wy.

The ontical path ABB’A’D at a freauencv 2 is reoresented bv the solid
line in Fig. 2.25. while the path for a rav uoshifted bv dQ2 is reoresented bv
the dashed line. The successive angles of incidence-refraction are 6y and 0
at point A. 6, and 63 at point B. 64 and 65 at point B’. and finallv 6 and
07 at point A’. The two prisms are identical. with eaual abex angle o and
with pairs of faces oriented parallel as shown in Fig. 2.25. At anv wavelength
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or freauencv Q:

e 03 =04
o 0) =05
e 01 = bg
e Hy =06
e 01+60) =«

o dO1/dQ = —db)/dQ.

If the prisms are used at minimum deviation at the central waveleneth. 6y =
03 = 04 = 67. If. in addition to being used at minimum deviation. the prisms are
cut for Brewster incidence. the anex angles of both prisms are @« = 7 — 26y =
m — 2 arctan(n).

The challenge is to find the freauencv dependence of the ootical nath ABB’A’D.
The initial (geometrical) conditions are defined bv

e the distance a = OA from the point of impact of the beam to the anex O
of the first prisms. For convenience. we will use in the calculations the
distance OH = h = OA cos o = acos a.

e the separation s between the parallel faces of the prisms.

o the distance ¢ between the anex O and O’. measured alone the exit face of
the first orism. cf. Fig. 2.25.

The chanees in nath leneth because of disnersion can be understood from a
olance at the fieure. comparing the ontical naths at € (solid line) and Q2 + dQ2
(dashed line). The contributions that increase the nath leneth are:

1. positive disnersion because of nronagation through the nrism material of
positive dispersion (AB and B’A’)

2. positive dispersion because of the increased path leneth BB’ in air
(increment SB”” in Fig. 2.27)

3. positive dispersion because of the increased path leneth A’D in air
(nroiection of A’A””” along the beam pronagation direction).

The contributions that decrease the nath leneth (negative dispersion) of the
freauencv upshifted beam can best be understood with Figures 2.26 and 2.27.
Figure 2.26 shows the configurations of the beams if the two prisms were brought
together. i.e.. BB’ = 0. Figure 2.27 shows an expanded view of the second prism.
The neeative dispersion contributions emanate from:

1. The sh(mned pnath lenegth in glass because of the aneular disnersion (AA”
versus AA’ in Fig. 2.26).
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Figure 2.26 Beam passage through the two prisms. when the distance BB’ (in Fig. 2.25) has been
reduced to zero. The distance between the anexes O and O’ has been reduced to 00" = t —
BB’ sin 03 (referring to Fig. 2.25). The distance between parallel faces is then ¢ = 00" sina =
(t — BB’ sin 03) sin o

Figure 2.27 Details of the beam passage through the second prism.
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2. the shorter nath leneth in the second orism because of the deflection of the
beam bv the first one (path difference B”T in Fie. 2.27).

Path Throueh Glass

The total path in elass is L, = AB + B’A’ where AB = asina/ cos6, and
B’A’ = O'B’ sina/ cos(a — 0) = O’B’ sin «/ cos 0. with:

O'B' =t — stan 03 — a(cos « + sin « tan 6;). (2.84)

We thus have for the total transmitted path in elass:

— asin o . sin o
L, =AB+ B'A' = + [t — stan 03 — a(cos o + sin « tan 6)1
cos fy cos 01
sin o
= (t — stan 63) . (2.85)
cos 01

As expected. the total path through elass is indenendent of the starting position
defined bv a. If the two orisms are brought together as in Fig. 2.26. thev act
as a slab of elass with parallel faces. of thickness ¢ = L, cos®8;. There are
three contributions to the ontical nath change from Fig. 2.26: one because of the
change in index. a second because of the change in anegle. and a third because
the path leneth L, is freauencv dependent. Takine the derivative of QnlL,/c with
L, defined bv Ea. (2.85):

dtkL,)  d nQL,

a2 d2 c

L, dn ‘nQL, - doy

== n+Q— + tanf; —

c 1749 c 1749
nQ2s  sino dbs

_ (2.86)
ccos?f; cosf dQ

The first term can be attributed solelv to material disobersion. The next term is
the chanee in lenegth in glass because of the angular disnersion df/d<2. and the
last exoresses the reduction in path length in the second prism because of the
pronagation of the angularlv dispersed beam in air. The exoression above onlv
partlv accounts for the enerev tilt associated with the aneular disbersion d63/d2.
Another contribution arises from the path through air to a reference olane.
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Path throueh Air between and after the Prisms

We have to account for the contributions of the nathleneths BB’ and A’D to
the eroup delav:

d Q— QdBB’ BB’
— —BB' =— + —. (2.87
a2 ¢ c dQ2 c

For the path BB’ = s/cos 05. there is onlv a chanee in leneth eaual to SB””. which
can be obtained bv either differentiatine s/cos 03. or_simnlv from geometrical
considerations using Fig. 2.25 (SB”” = SB” tan 3 = BB’ tan 63d03):

dBB’ s dos

= tan 03 ——. (2.88)
d2 cos 03 dQ2
The path in air after the second prism can be expressed as:
A'D = u — O'A’ sin 6. (2.89)
Because u is not a function of e. the contribution to the eroup delav is:
1d QA'D sinfg d = ——
- = — —(QO'AN. (2.90)
c a2 c dQ2

For O’A’ we find:

O'A' =O0'H + HA' = O'B'Icosa + sin e tan(a — 6>)1

= [t — stan 03 — a(cos « + sin «tan )1 [cos @ + sin a tan(a — 62)1

cosfy

= t—stanf3 —a [cosa + sinatan(a — 6x)1
c

)
=1t —stanOz1llcosa + sinatan ;1 — a. (291

where we have used cosa + sinatan @ = cos(a — 6»)cos 6. The contribution
of A’D to the groupo delav is:

sin 6y d(QQO’A") O'A’sinfy  Qssin Oy . dos
— = — [cosa + sinatan 61 —
c aQ c ccos? 63 dQ

Q sin ) sina df
[t — stan 631 —
¢ cos2 61 dQ

+



112 Femtosecond Owvtics

A'D nQs , _ sin20, do,
= — — ———— cosasinf] + sinw —
¢ ¢ cos? 03 cosf;  dQ

nQ2 sin & sin 6 d6;
+ — [t — stan 631

_ (2.92)
¢ cos2f; dQ

In the last eauation we used the fact that « is an arbitrarv constant. for example
zero. so that A’D = —O’A’ sin 6.

Total Path in Glass and Air

After addinge all contributions to the total phase
Q . - _
VY =— nlL,+BB +AD .
c

we obtain for the eroup delav usine Eas. (2.86). (2.87). (2.88). (2.90).
and (2.92):

dv d ‘QnLg’+d QBB d QAD

E - E c E c ds2 c
nL, (BB +A'DY L,Qdn nSL, de,
= +—_—t — + tan 0] —
c c c dQ2 c a2
‘ nQs sina s .
— + tanf3 + ———— cosa sin 0
ccos2fzcosf;  ccost ccos? s
sin « sin? 01 o do; nQ sin o sin 81 dO,
_— — — —t—stan3]l ———— —
cos dQ c cos2 0, dQ
B OPL(ABB'A’D) N L, dn
- c c dQ
Qs . . dos
———— (—nsinacosf; +cosfztan O3 + ncosa sin f;) —.
ccos? 63 dQ

(2.93)
where we have defined the ontical path leneth OPL(ABB'A’D) = nL, + (BB’ +

A’D). The factor precedine d03/d2 cancels. because:

sin 03

cosa sinfy — sina cosfy +
n

= cos(fy + H2)sin O] — sin(B; + H) cos B + sin H,

= 0.
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The comnvlete exnression for the eroun delav throueh the nair of orism
reduces to:

dav OPL(ABB'A'D) n L,2 dn

- - = S (2.94)
1749 c c dQ

The first terms in the last eauation reoresents the travel delav at the phase
velocitv:

OPL(ABB'A'D)  L.n s A'D
_— = + +
c c ccosfs c

(2.95)

The second part of Ea. (2.94) is the carrier to envelone delav caused bv the pair
10.

of prisms'”:
L, dn

. (2.96)
c dQ2

Qd L
1cp(Q) = ——OPL(ABB'A'D) =
c dQ2

The second derivative of the phase. obtained bv takine the derivative of
Ea. (2.94). is:

d*w L dn N d’n

— =1L, —_— wy ——=

sz wy dQ y dQZ wy
wy dn ssina dos

ccosf) dQ wy COS2 63 aQ

wy

do
4+ = — Lotan 6 — ) (2.97)

The derivatives with resnect to Q are related. Bv differentiating Snell’s law for
the first interface:

tan 0
do) = — dn = —db;. (2.98)
n

10We are assumine that the prisms are in vacuum. i.e.. the contribution to the dispersion from air
is neglected.
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For the second interface. takine the nrevious relation into account. we find:

né
cos 03d03 = ncos 0rd6, + sin 6rdn = ncos 6, ! +sin6, dn
n
. sina
= (cosBtan B + sinH2) dn = dn. (2.99)
cos 0
or:
sin o
df3 = ———dn. (2.100)
cos 01 cos 63

Therefore. the second-order dispersion Ea. (2.97) reduces to an easilv inter-
pretable form:

d>w L, _ dn d?n
T 2 Ly
aQ? ¢ dQ a?
‘ ) ? do
_oe 8 @ L P (2.101)
¢ cosfs a2 c d2
(¢ wy

This eauation applies to anv pair of identical isosceles prisms in the parallel face
confieuration renresented in Fie. 2.25. for an arbitrarv anele of incidence. The
GVD is simplv the sum of three contributions:

1. The (vositive) GVD because of the pronagation of the pulse through a
thickness of elass L,.

2. The negative GVD contribution because of the angular dispersion d63/d 2
aoolied to Ea. (2.76) over a distance BB’ = s/cos 65.

3. The neeative GVD contribution because of the aneular dispersion d0;/d2
(deflection of the beam at the first interface) anolied to Ea. (2.76) over a
distance L, in the elass of index n.

In most practical situations it is desirable to write Ea. (2.101) in terms of the
inout anele of incidence 0y and the prism anex anele «. The necessarv eauations
can be derived from Snell’s law and Ea. (2.76):

-—3 dfy . _dn”
ncosfp—— — sin Hp—
dQ

da o
0= n sin“(6p)
dQ dQ
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1 -

d - 5 .9 ) do, . dn

— 03 = 1—n"sin“(a — 07 ncos(a — 01— + sinla — 01)—

dQ dQ dQ
(2.102)

where 0; = arcsin(n~! sin 6y) and d6y/d2 = 0.

For the narticular case of Brewster angle prisms and minimum deviation (svm-
metric beam path through the prism for Q2 = wy). we can make the substitutions
d01/dn = —1/n%. and d3/dn = 2. Using 6y = 63 = 04 = 67. the various angles
are related bv:

tanfy = n
. n
sinfy = cosf; =
1+ n?
. 1
cosfp = sinbf; =
1+ n?
. 2n
sine = — (2.103)
n-+1
The total second-order dispersion in this case becomes:
- - . . 2
d*w L, dn d*n wy L, dn
—_— =— 2 — 4wy — — — 4L+ — —
dQ2 wy ¢ dQ wy dQ2 wy ¢ n3 dQ y
(2.104)

where we have introduced the distance between the two prisms measured along
the central waveleneth L = s/cos 03. In terms of waveleneth:

d*w Pe d*n L, dn
— = Ly — - 4L+
dQ? 2mc? d)? e n3 dr ,,

wy

(2.105)

In manv oractical devices. L > L, and the second term of Ea. (2.105) reduces
to Ldn/d\)?.

It is left as a problem at the end of this chaoter to calculate the exact third-
order dispersion for a pair of orisms. If the angular dispersion in the glass
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can be neglected (L > L,). the third-order dispersion for a Brewster angle
prism is:

\I/,:gt((l)() ~
4 _ ) - - : -
Ay ” 3 ’n 1 "
e 1)20 12L n'= 1 —xen'(n7" = 2n) +xen'n” — L,(3n" + Agn™") .
me)-c

(2.106)

" for the derivatives

To simolifv the notation. we have introduced n’. n” and n
of n with respect to A taken at Ay.

The presence of a negative contribution to the GVD because of angular dis-
persion offers the possibilitv of tunine the GVD bv chanegine L, = ¢/sin 6y
(¢ is the thickness of the glass slab formed bv bringing the two prisms together. as
shown in Fig. 2.26). A convenient method is to simplv translate one of the prisms
peroendicularlv to its base. which alters the glass path while keening the beam
deflection constant. It will generallv be desirable to avoid a transverse displace-
ment of spectral components at the output of the dispersive device. Two pooular
prism arrangements which do not senarate the snectral comnonents of the pulse
are sketched in Figure 2.28. The beam is either sent through two prisms. and
retro-reflected bv a plane mirror. or sent directlv through a seauence of four
prisms. In these cases the dispersion as described bv Ea. (2.101) doubles. The
values of W”. W, etc. that are best suited to a particular experimental situa-
tion can be predetermined through a selection of the optimum prism separation
s/cos 03. the elass nathlength L,. and the material (cf. Table 2.1). Such ontimiza-
tion methods are particularlv important for the generation of sub-20 fs pulses in
lasers [35.361 that use orisms for GVD control.

In this section we have derived analvtical expressions for dispersion terms
of increasing order. in the case of identical isoceles prism pairs. in exactlv
antinarallel configuration. It is also nossible bv methods of pulse tracing through

tAGVD“» tA GVD

Figure 2.28 Setups for adiustable GVD without transverse displacement of spectral components.
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Figure 2.29 Dispersion (solid lines) and reflection losses (dash—dotted lines) of a two-prism
seauence (SO1—fused silica) as a function of the angle of incidence on the first nrism surface.
Svmmetric beam path through the prism at the central wavelength is assumed. Curves for three dif-
ferent anex angles (—4°. 0°. 4°) relative to o = 68.9° (anex angle for a Brewster nrism at 620 nm)
are shown. The tic marks on the dashed lines indicate the angle of incidence and the dispersion where
the reflection loss is 4.5%. (Adanted from Petrov et al. [311.

the orisms to determine the phase factor at anv freauencv and anele of inci-
dence [30.31.37-391. The more comnlex studies revealed that the GVD and
the transmission factor R [as defined in Ea. (2.71)1 depend on the angle of inci-
dence and apex angle of the prism. In addition. anv deviation from the Brewster
condition increases the reflection losses. An example is shown in Fig. 2.29.

2.5.6. GVD Introduced bv Gratines

Gratings can oroduce larger aneular dispersion than orisms. The resulting
negative GVD was first utilized bv Treacv [281 to compress pulses of a Nd:glass
laser. In complete analogv with prisms. the simplest nractical device consists of
two identical elements arranged as in Figure 2.30 for zero net angular dispersion.
The dispersion introduced bv a pair of parallel eratings can be determined bv
tracine the freauencv dependent rav path. The ontical path lensth ACP between
A and an output wavefront PP, is freauencv dependent and can be determined
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Figure 2.30 Two parallel eratines nroduce GVD without net angular dispersion. For convenience
a reference wavefront is assumed so that the extension of PPy intersects G at A.

with help of Fie. (2.30) to be:

=—— 1+cos(8 +8) (2.107)
cos(B)

where 8 is the anegle of incidence. 8’ is the diffraction anele for the freauencv
component 2 and b is the normal separation between G| and G,. If we restrict our
consideration to first-order diffraction. the anele of incidence and the diffraction
angle are related through the erating eauation

. . 2mc
sinB —sinB8 = — (2.108)
Qd

where d is the erating constant. The situation with eratines is however different
than with prisms. in the sense that the ontical path of two parallel ravs out of
grating G impinging on adiacent grooves of grating G, will see an ontical path
difference CP — CoPq of mA. m being the diffraction order. Thus. as the anele
B’ changes with waveleneth. the phase factor QACP/c increments bv 2m each
time the rav AC passes a period of the ruling of G, [281. Because onlv the relative
phase shift across PP matters. we mav simplv count the rulings from the (virtual)
intersection of the normal in A with G,. Thus. for first-order diffraction (m = 1).



