
The two fundamental differential equations of electrostatics are, 

 0/ρ ε∇• =E
�

 [I.1] 

 ∇ × =E 0
�

 [I.2] 

Note that [I.2] implies, 

 :∃Φ = −∇ΦE
�

 [I.3] 

Putting [I.3] into [I.1], 
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We know [I.4] as Laplace’s equation. It has the solution, 
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 [I.5] 

Now, introduce the so-called “a-potential”; it is defined as “offset” from the potential ( )Φ x  by “a”, and we construct this 

potential just like the integral definition [I.5] as, 

 
3

2 2
0

1 ( )
( )

4 ( )
a d

a

ρ

πε

′
′Φ = ⋅

′− +
∫

x
x x

x x

 [I.6] 

We can clearly see, 

 ( )0lim ( ) ( )a a→ Φ = Φx x  [I.7] 

Take the Laplacian of both sides of [I.6], and “expect” it to be equal to something “analogous to” 
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The Laplacian only affects non-integration variables (“all the unprimed stuff”), since the ′x  is a counting device for the 

integral and not an argument of 
a

Φ  as ( )
a

Φ x . 

Thus, we need the radial part of the Laplacian only, 
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Using [I.9] on 
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, we get, 
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 [I.10] 

Combining the two remaining terms 2 2 5/2

3

( )r a+
 and 2 2 2 3/2
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( )r r a+
, 
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Jackson claims, 

 

2????
2

2 2 5/22 2

1 3

( )( )
r

a

r aa

 
∇ = 

  +′− + x x

 [I.12] 

Perhaps we made a math error somewhere. Let’s try Maple, and entrust it to carry out ( )2 2 2

21 1
r rr r a

r∂ ∂
∂ ∂ +

, as in [I.10]. The 

derivative is, 

> 'diff(((r^2)*diff((r^2 + a^2)^(-1/2),r)),r)/(r^2)'=diff(((r^2)*diff((r^2 

+ a^2)^(-1/2),r)),r)/(r^2); 

  [I.13] 

Maybe I just carried out my parenthesis wrong somewhere. Better get good at that before class begins! Now, this does 

simplify to the result Jackson has! 

> (-3*r^2/(r^2+a^2)^(3/2)+3*r^4/(r^2+a^2)^(5/2))/r^2=simplify((-

3*r^2/(r^2+a^2)^(3/2)+3*r^4/(r^2+a^2)^(5/2))/r^2); 

    [I.14] 

This [I.14] confirms [I.12], and so [I.8] becomes, 
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…and in [I.15] we have the abbreviation r ′= −x x . Now, consider what happens if a � 0 and r � 0, the function 
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becomes infinite, but it is otherwise-well behaved. The limits a � 0 and r � 0 are not artificial, as they correspond 

to a point charge. 

Also, consider the integral of the function
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> 'int(((r^2)/(a^2+r^2)^(5/2)),r)'=int(((r^2)/(a^2+r^2)^(5/2)),r); 

 

     [I.18] 

Rearranging  [I.18] and evaluating it at the limits  
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???? Jackson claims the bracketed-expressionhas a volume integral of 4π  for arbitrary “a”! I don’t think so… 

Now, imagine a sphere about the point whre we are considering the ( )Φ x as in [I.5], 

    [I.20] 

Some things to notice about [I.20], 

1) R a>>  

2) R is chosen such that ( )ρ ′x  changes little over the interior of the sphere (to be completely general, there is some ( )ρ x  

inside the sphere of [I.20] even so we didn’t draw it so). 

For a well behaved potential [I.5] (physically expected), the contribution to the integral-Laplacian defining the “a-

potential”, [I.8], will vanish like a
2
 as a � 0 on the outside of the sphere. Thus, we only need to integrate the inside of the 

sphere. 

Now, we can Taylor-expand about ′ =x x  the well-behaved ( )ρ ′x , as, 
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( ) ( ) ...rρ ρ ρ′ = + ∇ +x x  [I.21] 

NOW…if we can justify [I.21] and [I.19], we can justify the Dirac-delta solution to Poisson’s equation. 

             

Okay, concerning [I.19], let the lower bound of integration be replaced by a small number, ε  
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Recall the binomial series expansion, 
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In [I.20], we agreed by design that R a>> , and so the denominator of [I.22], 
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+ , becomes, 

 
( ) 4 2 2 2 22 12

4 2 2 2 22 12

3 3 3 3

2 2 2 3/2 5 55 3 1 1 11
4 2 22

3 ( ) 3 (1 )(1 ( )) 3 (1 )(1 )3 (1 ( ) ...) ( )

r R

a a a a aa a
r R R R R RR R

r R R R

a r a a aa Oε

=

=

 
= = = 

+ + + + + ++ − + 
 [I.24] 

…in which we have dropped the terms 
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Put [I.25] into [I.17], 
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Aggg…failure. 


