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CHAPTER  21    Electric Charge

Answers to Understanding the Concepts Questions

1. The only point where the net force on a test charge is zero is the midpoint between the two charges.

2. Yes, as Kepler’s laws require that two objects attract each other with an inverse-square force, be it
gravitational or electrostatic. Kepler’s first law still holds true, namely, the two charges will move in
an elliptical orbit around the center-of-mass of the system (provided that their total energy is
negative ––  see the concept of electrostatic potential energy discussed in Chapter 24) . Since the force is
aligned with the line connecting the two charges it provides no torque on either charge, so the angular
momentum of each charge is still conserved and Kepler’s second law (the law of area) remains valid.
Finally, Kepler’s third law, a direct consequence of the inverse-square nature of the force, is also true
here: T2 is proportional to r3.

3. The balloon acquires a charge when rubbed on a sweater. It then induces an opposite charge on the wall
through polarization, and the attraction between the charges on the balloon and those on the wall
keeps the balloon there for a while.

4. The spark is caused by a transfer of the charge carried by the walker to the door knob. This can happen
only if there is a build-up of charge on the walker. In the winter the air is drier; that is, there is less
water vapor in the air. Since water molecules are efficient at picking up and carrying off charges on an
object in their presence, it is more difficult for you to build up a significant charge in humid air. In the
winter there is a better chance for a charge build-up, and therefore of a dramatic discharge.

5. In a short time interval ∆t the objects cannot move very far, so we can consider their separation, r,
essentially constant. Therefore, the electrostatic repulsion between them is also a constant: F = kq1q2/r2

≈ constant. The distance each can travel follows from ∆xi = !ai(∆ t)2 =  !(F/mi)t2 ≈ !(kq1q2/r2mi)(∆ t)2,
where i = 1, 2.  So the factors that determine the distance each object can travel are q1, q2, r, ∆t, and the
mass the object in question. The ratio is ∆x1 /∆x2 = m2/ m1  = 3, i.e., the object with three times the mass
travels 1/3 of the distance of the other one.

6. The basic principle of the quantitative operation of the electroscope is outlined in Problem 21-5. The
measurement of the angle made by a gold leaf can be translated into a measurement of the charge. In
order to measure accurately the charge you carry you might want to stand on an insulating mat as you
touch the metal top of the electroscope. That both controls the situation and ensures that your charge
doesn't leak off elsewhere just as you are trying to measure it.

7. The ones farther from the nucleus are more involved in chemical reactions. This is because chemical
reactions involve rearrangement of electronic orbitals, and electrons in an outer orbital are not as
strongly tied to the nucleus so they are more likely to be able to rearrange themselves in a chemical
reaction.

8. Let's call the quarks with charge 2e/3 u-quarks, and those with charge –e/3 d-quarks (this is the
standard nomenclature). Then the following compose all the possible combinations of three quarks,
together with their charges:  uuu:  2e;  uud: e;  udd: 0;  ddd: –e. The second combination has charge
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corresponding to that of the proton, while the third combination has charge corresponding to that of
the neutron. The other two combinations do not occur as stable particles.

9. Rubbing between the fingers and the packaging material results in charge transfer between the two,
causing both to be oppositely charged. The opposite charges then attract each other, and for the small
pieces of packaging materials (peanuts) with very little weight, this attraction is relatively strong
enough to cause them to stick to the fingers. They are difficult to shake off as their masses are so small,
and so the electrostatic attraction is often enough to withstand the violent acceleration of the shaking.

10. As an object is exposed to the air, it can get a fresh supply of electrons from humid air and neutralize the
excess positive charge.

11. The net force on an object at the center of the circle is indeed zero. However, this point is not a stable
equilibrium point. If the positive charge moves away from the center along the axis of the circular
charge distribution, all the forces act to repel it, so that it will accelerate away from the center. The
center is thus a point of unstable equilibrium, analogous to a ball resting on the top of a hill. The
slightest displacement will cause it to move away from its starting point.

12. As charges move, a certain amount of negative may leave one contact but an equal amount of negative
charge would enter the other one, thereby preserving the total amount of charges.

13. Let ball 1 have an initial charge of –4.8 (in units of 10–19 C); balls 2,3,4 are initially uncharged. If we
assume that the balls are identical, then touching 1 and 2 will give each one of them a charge of –2.4
units, while balls 3 and 4 remain uncharged. If now ball 1 (or 2) is made to touch both 3 and 4
simultaneously, then the three balls each get one third of the available charge, that is –0.8 units.

14. Assuming that the electrostatic force between the two objects is not negligible compared with the their
weights. You can suspend each object with a string and place them close together to see whether they
move closer to, or away from, each other. The absolute sign of the charge on each object cannot be
determined without further information. All we know can determine is whether their signs are the
same or opposite.

15. A spark occurs as a result of the charge transfer between your hand and the car door. The fact that the
rubber tires are good insulators only means that any excessive charges carried by the car cannot flow
into the ground immediately, and that does not prevent the charge transfer from happening between
the hand and the metal door knob, which is a conductor.

16. If the electrical charge of a fundamental particle such as the electron depended on its velocity, then we
would have a chance to measure the tiny parameter κ only because of a departure from neutrality.
Gravity is so weak that for all practical purposes two electrically neutral blocks of material do not
exert forces on one another. Under the hypothesis, such objects would only be neutral because any surplus
of charge due to a different motion of the electrons and the positive ions would be neutralized by
ambient charges. However, we could put the two blocks in a vacuum. If at that point there is no force
between the objects, then presumably the values of κ for the electrons and ions are such that at the
given temperature the net charge of each object is zero. That is because a given temperature for the
electrons corresponds, on average, to a certain value of ve

2 for the electrons and, by equipartition,
another value of vi

2 for the ions determined by the relation meve
2 = miv i

2. But now all we have to do is to
keep the objects in the vacuum and raise the temperature. Each object will now acquire the same net
charge, different from zero, and the repulsion should be detectable. We know that any such parameter
κ must be very tiny, if it is not zero, because the existence of a temperature-dependent inverse square
force has not been observed to the accuracy of our instruments.
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17. No. The measurement of e may yield v, but v is only the velocity of the charged particle relative to a
certain reference frame, not the absolute velocity, which is meaningless and impossible to measure.

18. No, because the data only show that for electrons and for protons the charge of each does not change. It
is entirely possible that in electron-proton collisions at high temperatures (high energies) at some
stage of the development of the quasar, some new net charge is produced from a neutral environment.
This would correspond to charge nonconservation. As long as the amount of new charge is small, and as
long as the processes producing these new charges do not affect the processes which cause the radiation
that we observe, charge conservation would not be observed by the study of the colors of the quasar
light.

19. If Earth and the Moon each has an equal number of protons and electrons and only the electronic charge
is modified, then yes, in principle, Earth and the Moon  would each carry a net charge and there would
be a, net electrostatic force of the form 1/r2 between them. Whether that force would overpower the
gravitational force depends on the amount of net charge on each of them. However, it would be more
likely for each of them to be electrically neutral when they were formed, meaning that they would
each end up with different number of protons and electrons.

20. This is exactly analogous to the motion of a mass inside Earth. We found in Chapter 12 that a mass
inside Earth undergoes harmonic motion about the center. A point charge of one sign embedded in a
spherically symmetric charge distribution of the opposite sign win also oscillate about the center of the
sphere. The frequency can be found when the force inside the sphere can be calculated. This will be done
in Chapter 23.

21. The force exerted on q1 by q2 doubles, as does that on q3 by q2.

22. The electrostatic force is largely responsible for the structures of atoms and molecules making up the
star. These particles emit electromagnetic waves, both visible and invisible, than may be detected by
us. If the electrostatic force over there were to have a different form than that on Earth, then the
wavelengths of the electromagnetic waves emitted from that star would differ significantly from the
corresponding values on Earth. This is not the case.
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Solutions to Problems

1. The number of electron charge units in the excess positive charge is
N  = Q/e = (1 × 10– 9 C)/(1.602 × 10–19 C/electrons) = 6.2 × 109 electrons,

so the cork ball has 6.2 × 109 fewer electrons.

2. Because the uranium atom was initially neutral, the charge is positive:
q = + 21|e| = + 21(1.602 × 10–19 C) = + 3.36 × 10–18 C.

The nucleus contains the positive charge of 92 protons:
Q = + 92(1.602 × 10–19 C) = 1.47 × 10–17 C.

3. Each molecule of CO2 contains 6 + 2(8) = 22 electrons.  The charge in 1 g is
  q  = [(1 g)/(44 g/mol)](6.02 × 102 3 molecules/mol)(22 electrons/molecule)(1.602 × 10–19 C/electron)

=  4.82 × 104 C.

4. Because the spheres are identical, charge will be distributed equally when they are connected.  After
the initial connection, each sphere will have a charge

q = @Q.
The grounded sphere will lose its charge.  When it is connected to the other sphere, the charge on that
sphere will divide equally:

q′ = !(@Q) = Q/6.  Thus the charges will be  Q/3, Q/6, Q/6.

5. Each gold atom has 79 electrons, so removing one electron in 1013 means
79  × 10–13 = 7.9  × 10–12  electrons per atom removed.

6. There are 79 protons per gold atom, and the number of gold atoms in the coin is N = (28.4 g)/(197
g/mol)(6.022  × 102 3/mol) = 8.682  × 102 2, so the total number of protons in the coin is

(79 protons/atom)(8.682 × 102 2 atoms) = 6.86  × 102 4 protons.

7. From symmetry considerations, each time two identical cork balls touch, the charge is shared evenly.
At the first touch, the first cork ball (and the second cork ball) will have ! of the original charge:

q1 = !q0 = !(– 4 × 10–10 C) = – 2 × 10–10 C,  and the number of electrons gained is

N 1 = (2 × 10–10 C)/(1.602 × 10–19 C/electron) = 1.25 × 109 electrons.
At the second touch, the second cork ball (and the third cork ball) will have !q1:

q2 = !q1 = !(– 2 × 10–10 C) =  – 1 × 10–10 C,   and the number of electrons gained is

N 2 = (1 × 10–10 C)/(1.602 × 10–19 C/electron) =  6.2 × 108 electrons.

q3 = q2 =  – 1 × 10–10 C,  6.2 × 108 electrons.

8. From symmetry considerations, each time two identical cork balls touch, the charge is shared evenly.
If we touch the first cork ball with an uncharged cork ball, the first cork ball (and the second cork ball)
will have 1/2 of the original charge.  If we now  touch the second cork ball with an uncharged cork ball,
the second cork ball and the third cork ball will have 1/4 of the original charge.  If we now touch the
third cork ball with the last uncharged cork ball, the third cork ball and the fourth cork ball will
have 1/8 of the original charge, which is

q = (1/8)q0 = (1/8)(– 1.04 × 10–13 C) = – 0.13 × 10–13 C, as desired.
If we discharge one of the cork balls after touching, we need only one extra cork ball.
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9. The total number of electrons in 0.1 g of aluminum is
N = [(0.1 g)/(27.0 g/mol)](6.02 × 102 3 atoms/mol)(13 electron/atom)
     = 2.9 × 102 2 electrons.

The fractional increase in the number of electrons is
fraction = (1 × 10– 6 C)/(1.602 × 10–19 C/electron)]/(2.9 × 102 2 electrons) = 2.2 × 10–10 .

10.       (a)
(b) Before the charge is added, the cork balls are hanging vertically,

so the tension is
T1 = mg = (0.2 × 10– 3 kg)(9.8 m/s2) = 2.0 × 10– 3 N.

After the charge is added, the charge will be shared equally by the
two cork balls, and there is a horizontal Coulomb force.
From the force diagram, we apply ∑

r 
F  = 0:

horizontal: T sin θ = F = kqq/r2;
vertical: T cos θ = mg.

If we divide the two equations, we get
tan θ = F/mg = kq2/r2mg = kq2/(2L sin θ)2mg

  = (9 × 109 N · m2/C2)(1 × 10– 7 C)2/[2(0.20 m) sin θ]2(0.2 × 10– 3 kg)(9.8 m/s2) =  0.0065/(sin2 θ).
This equation has only one unknown, θ, but the presence of trigonometric functions makes the
algebra a little messy.  When we calculate both sides for a range of angles, we get

sin θ = 0.19,    θ = 11°.
The tension is

T = mg/(cos θ) = (0.2 × 10– 3 kg)(9.8 m/s2)/(cos 11°) = 2.0 × 10– 3 N.
(c) From the analysis in part (b), we have θ = 11°.

11. (a ) Because a silicon atom has 14 electrons, we find the number of electrons from
N = [(5.98 × 102 7 g)/(28 g/mol)](6.02 × 102 3 atoms/mol)(14 electrons/atom)
     = 1.8 × 105 1 electrons.

(b) We find the fractional change from
∆q/q = (1 × 10– 6 C)/(1.8 × 105 1 electrons)(1.6 × 10–19 C/electron) = 3.5 × 10–39 .

12. Because charge is conserved, the two positive charges on the left must be balanced by two positive
charges on the right.  The charge of particle X is the proton charge:

qX = + 1.6 × 10–19 C.

13. (a ) For the reaction    p + p → e+ + e– + e+ + e– + 2n,   the charges (as multiples of e) are
+ 1 – 1 = + 1 – 1 + 1 – 1 + 0.   Thus, we have  0 = 0, so charge is conserved.

(b) For the reaction e+ + e– → 2p + n + 2γ, the charges (as multiples of e) are
+ 1 – 1 = + 2.   Thus, we have  0 ≠ 2, so charge is not conserved.

(c) For the reaction    e+ + e – → e+ + e– + p + p + 2γ ,  the charges (as multiples of e) are
+ 1 – 1 = + 1 – 1 + 1 – 1 + 0.   Thus, we have  0 = 0, so charge is conserved.

(d) For the reaction    n + p → e– + p + p,  the charges (as multiples of e) are
0 + 1 = – 1 + 1 – 1.   Thus, we have  1 ≠ – 1, so charge is not conserved.

14. We let units help us find the charge:
q = [(6.5× 10– 4 g)/(9.11 × 10–28 g/electron)](1.60 × 10–19 C/electron)
   = 1.1 × 105 C.
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15. The proton at rest has charge + e0.  The electron has charge – e0(1 +  v2/c2), so the net charge is
Qnet = + e0 – e0(1 + v2/c2)

= (1.60 × 10–19 C){1 – [1 + (1/137)2]}
=  – 8.5 × 10–24 C.

16. For the Coulomb force to be equal to the weight, we have
k e2/r2 = mg;
(9 × 109 N · m2/C2)(1.6 × 10–19 C)2/r2 = (1.67 × 10–27 kg)(9.8 m/s2), which gives
r = 1.2 × 10– 1 m =   12 cm.

17. The two up quarks will repel each other with a force
Fup-up = kq1q2/r1 2

2

= (9 × 109 N · m2/C2)(1.6 × 10–19 C)(1.6 × 10–19 C)/(1.5 × 10–15 m)2

=  46 N repulsion.
The up and down quarks will attract each other with a force

Fup-down = kq1q3/r1 3
2

  = (9 × 109 N · m2/C2)(1.6 × 10–19 C)(1.6 × 10–19 C)/(1.5 × 10–15 m)2

  =  23 N attraction.

18. We equate the two forces:
F = kq1q2/r2 = mg;

r = (kq1q2/mg)1/2 = [(9 × 109 N · m2/C2)(8.5 × 10 – 9 C)2/(0.016 kg × 9.8 m/s2)]1/2 = 2.0  × 10–3 m.

19. The two ions will repel each other.  The magnitude of the Coulomb force is
F = kq1q2/r2;

(1.1 × 10–11 N) = (9 × 109 N · m2/C2)q2/(4.5 × 10– 9 m)2, which gives  q = 1.6 × 10–19 C.
We find the number of electron charges from

N = q/e = (1.6 × 10–19 C)/(1.6 × 10–19 C/electron) = 1 electron.

20. We assume that the cork balls are small, so they can be treated as point charges.  For the Coulomb force,
we have

F = kq1q2/r2;
0.18 N = (9 × 109 N · m2/C2)q2/(2 × 10– 2 m)2, which gives

          q = 8.9 × 10– 8 C.
If the pith balls were not small, the force between the charges would move some charge to the opposite
sides of the pith balls.  The center of the charge would not be at the center of the pith balls.

21. Both forces are inverse-square forces, so we have
  FE/Fg = (kq2/r2)/(Gm2/r2) = kq2/Gm2

= (9 × 109 N · m2/C2)(1.6 × 10–19 C)2/(6.67 × 10–11 N · m2/kg2)(0.10 × 10– 3 kg)2

=  3.5 × 10–10 .
This result is so different from Example 21-6 because the masses are so much larger than they are at the
atomic scale.

22. For the Coulomb force to be 0.05% of the measured force, we have
F = kq1q2/r2;
(0.05 × 10– 2)(7 × 10– 7 N) = (9 × 109 N · m2/C2)q2/(0.10 m)2, which gives
q = 2.0 × 10–11 C.
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23 . (a ) We consider two equal charges of magnitude 1 C separated by 1 cm.  We call q1 the magnitude in
esu.  If we equate the force in the two systems of units, we have

F = q1
2/r2 = kq2/r2;

[q1
2/(1 cm)2](10– 5 N/dyne) = (9 × 109 N · m2/C2)(1 C)2/(1 × 10– 2 m)2, which gives

q1 = 3 × 109 esu in 1 C.
(b) The electron charge is

e = (1.6 × 10–19 C)(3 × 109 esu/C) = 4.8 × 10–10 esu.

24. (a ) The attractive Coulomb force provides the centripetal acceleration:
F = mv2/r = mrω2;
k e2/r2 = mrω2, which we write as  ke2 = mr3(2π/T)2;
(9 × 109 N · m2/C2)(1.6 × 10–19 C)2 = (9.11 × 10–31 kg)r3[2π/(24 h)(3600 s/h)]2,

which gives  r = 3.6 × 103 m.
(b) For the hydrogen orbit, we have

(9 × 109 N · m2/C2)(1.6 × 10–19 C)2 = (9.11 × 10–31 kg)r3[2π/(4 × 10–16 s)]2,
which gives  r = 1.0 × 10–10 m.

25. The Coulomb force is
F = kq1q2/r2 = kq1(q – q1)/r2 = (qq1 – q1

2)k/r2, with q1 as the variable.
To find q1 that maximizes the force, we set dF/dq1 = 0:

dF/dq1 = (q – 2q1)k/r2 = 0, which gives  q1/q = !.

This means that q2/q = !, which we would expect from the symmetry of the force law.

26. The two particles repel each other.  At the position of closest approach, we have
  F  = kq1q2/r2 = k(2e)(74e)/r2

= (9 × 109 N · m2/C2)(2)(74)(1.6 × 10–19 C)2/(6.0 × 10–12 m)2

= 9.5 × 10– 4 N repulsion.

27. (a ) The opposite charges attract.  We find the magnitude of the Coulomb force from
  F = ke2/r2 = (9 × 109 N · m2/C2)(1.6 × 10–19 C)2/(3 × 10–10 m)2

=  2.6 × 10– 9 N toward the proton (centripetal).
(b) The attractive Coulomb force provides the centripetal acceleration:

F = mv2/r;
(2.6 × 10– 9 N) = (9.11 × 10–31 kg)v2/(3 × 10–10 m), which gives
v = 9.2 × 105 m/s.

(c) We find the frequency from
f = v/2πr = (9.2 × 105 m/s)/2π(3 × 10–10 m) = 4.9 × 101 4 Hz.

(d) We find the spring constant from
k = (2πf)2m = [2π(4.9 × 101 4 Hz)]2(9.11 × 10–31 kg) =  8.6 N/m.

28. (a ) The acceleration of each particle is caused by the same force:
F = m1a 1 = m2a 2 ,  which gives
m2 = (a1/a2)m1 = [(1.93 m/s2)/(5.36 m/s2)](31.3 g) = 11.3 g.

(b) Because the particles have equal charges, we have
k q2/r2 = m1a 1;
(9 × 109 N · m2/C2)q2/(8.75 × 10– 2 m)2 = (31.3 × 10– 3 kg)(1.93 m/s2), which gives
q = 2.27 × 10– 7 C.
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29. From the force diagram, we apply ∑    
r 
F  = 0:

horizontal: T sin θ = F = kqq/r2;
vertical: T cos θ = mg.

If we divide the two equations, we get
tan θ = F/mg = kq2/r2mg = kq2/(2L sin θ)2mg
tan 10° = (9 × 109 N · m2/C2)q2/[2(0.20 m) sin 10°]2(0.20 × 10– 3 kg)(9.8 m/s2) ,

which gives  q = 1.4 × 10– 8 C.

30. (a ) We find the magnitude of the electrical force from
FE = kq2/r2

= (9 × 109 N · m2/C2)(8.5 × 101 5 C)2/(3.8 × 108 m)2 = 4.5 × 102 4 N.
(b) The ratio of forces is

FE/Fg = (kq2/r2)/(GmM/r2) =  kq2/GmM

    = (9 × 109 N · m2/C2)(8.5 × 101 5 C)2/(6.67 × 10–11 N · m2/kg2)(7.36 × 102 2 kg)(5.98 × 102 4 kg)
                                        = 2.2 × 104  .

(c) The density of charge of the earth is
ρ = Q/V = (8.5 × 101 5 C)/(4/3)π(6.4 × 106 m)3 =  7.7 × 10– 6 C/m3 .

(d) The density of protons to produce the charge density of part (c) is
ρp = ρ/e = (7.7 × 10– 6 C/m3)/(1.6 × 10–19 C/proton) = 4.8 × 101 3 protons/m3 .

(e) The density of all protons in Earth is
ρp′ = !ρM/mp = !(5.52 × 103 kg/m3)/(1.67 × 10–27 kg/proton) = 1.7 × 103 0 protons

31. Because q1 and q2 attract each other, they must have opposite signs and their product will be negative.
We can take this into account by giving the force a negative value:

F1 2 = kq1q2/r1 2
2;

– 1.4 × 10–2 N = (9 × 109 N · m2/C2)q1q2/(15.0 × 10–2 m)2, which gives
q1q2 = – 3.5 × 10–14 C2.

Because q2 and q3 attract each other, they must have opposite signs and their product will be negative.
We can take this into account by giving the force a negative value:

F2 3 = kq2q3/r2 3
2;

– 3.8 × 10–3 N= (9 × 109 N · m2/C2)q2q3/(20.0 × 10– 2 m)2, which gives
q2q3 = – 1.7 × 10–13 C2.

Because q1 and q3 repel each other, they must have the same sign and their product will be positive.
We can take this into account by giving the force a positive value:

F1 3 = kq1q3/r1 3
2;

+ 5.2 × 10– 3 N = (9 × 109 N · m2/C2)q1q3/(10.0 × 10– 2 m)2, which gives
q1q3 = + 5.8 × 10–14 C2.

We have three equations for three unknowns, q1 , q2 , and q3.  If we assume that q1 is positive, when we
combine the equations we get

q1 = + 1.1 × 10– 7 C,

q2 = – 3.2 × 10– 7 C,

q3 = + 5.3 × 10– 7 C.
If we took q1 to be negative, we would get the same magnitudes, with q1 and q3 negative and q2 positive.
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32. (a ) In order to have a repulsion, Q must be negative.  For forces with equal magnitudes, we have
GMm/r2 = kQe/r2, so we get
    Q = – GMm/ke

= – (6.67 × 10–11 N · m2/kg2)(6 × 102 4 kg)(0.9 × 10–30 kg)/(9 × 109 N · m2/C2)(1.6 × 10–19 C)
=  – 2.5 × 10– 7 C.

(b) The number of protons in the earth is
N p = !M/mp.

The discrepancy between the proton  and the electron charges as a fraction of the electron charge is
     ∆ = (Q/Np)/e = 2Qmp/Me

= 2(2.5 × 10– 7 C)(1.6 × 10–27 kg)/(6 × 1024 kg)(1.6 × 10–19 C)
= 8 × 10–40 of electron charge.

33. The force on a mass m attracted to a fixed mass M is Fg = GMm/r2.  The potential energy of the mass m is
U = – GMm/r, with U = 0 when r = ∞.

The negative sign for U is due to the force being attractive; the potential energy decreases as the masses
come closer.
The force on a charge q repelled by a fixed charge Q of the same sign is FE = kQq/r2.  The potential
energy of the charge q is

UE = + kQq/r, with U = 0 when r = ∞.
The positive sign for U is due to the force being repulsive; the potential energy increases as the charges
come closer.
If the electrical force is the only one present, we have energy conservation.  If the moving point charge
is aimed straight at the fixed charge, at the distance of closest approach the charge will momentarily
come to rest.  Thus we have

K i + Ui= Kf + Uf;
K i + 0 = 0 + (kq1q2/rf) ;
1 J = (9 × 109 N · m2/C2)(10– 6 C)(10– 4 C)/rf , which gives
rf = 0.9 m.

34. Because the two charges have the same sign, the charge Q must  be
between the two on the x-axis, where the two forces on Q will be in
opposite directions.  The net force will be zero when the two
magnitudes are equal:

k4qQ/r1
2 = k7qQ/r2

2, or, when we cancel common factors,
4/x2 = 7/(5 – x)2,  which gives x = 2.15, and –15.4.

The point is between the two charges at  x = 2.15.

35. Because the two charges have opposite signs, the charge Q must be
on the x-axis outside the two, where the two forces on Q will be in
opposite directions.  The net force will be zero when the two
magnitudes are equal

k5qQ/r1
2 = k3qQ/r2

2, or, when we cancel common factors,
5/x2 = 3/(x – 10)2,  which gives  x = 5.6, and 44.4.

The point is outside the two charges at  x = 44.4.
Compare with the answer to Problem 34.
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36.

                            

+ x, cm

0 6
q

+ + + + +

3 9 12 15
q q q q q

    
r 
F 

Because all of the charges have the same sign, the charge at
x = 25 cm is repelled by all of the others.  The net force will be toward + x, with a magnitude equal to
the sum of the magnitudes of the individual forces:

   
F =

kqq
ri

2Σn= 1

5

= kqq 1
0.25 m

2 + 1
0.20 m

2 + 1
0.15 m

2 + 1
0.10 m

2 + 1
0.05 m

2

= (9 × 109 N·m2/C2)(2.4 × 10– 7 C)2

0.05 m
2

1
5

2 + 1
4

2 + 1
3

2 + 1
2

2 + 1
1

2 = 0.30 N.

The net force is 0.30 N in the + x -direction.

37 . The ring of charge Q can be thought of as an infinite number of differential
charges spread uniformly on the ring.  The positive charge q is attracted
by one of the differential charges, which has a matching charge on the
opposite side of the ring.  The sum of the forces from the pair is zero, thus
when all pairs are considered, the net force on q must be  zero.

38. There will be two forces acting on the third charge.  When the third
charge is in equilibrium, the net force is zero, so the two forces must be
in opposite directions.  Because the sign of the third charge is opposite
to the other two charges, it is attracted by the other two, so the third
charge must be between the other two charges, which are separated by
3√2 cm along the line y  = – x.  We place the third charge at (+ d cm, – d cm),
with d < 3 cm.  The magnitudes of the two forces must be equal:

F3 1 = F3 2;
k q3q1/r3 1

2 = kq3q2/r3 2
2, which reduces to

q1/r3 1
2 = q2/r3 2

2;
q/(d√2)2 = 3q/[(3√2 cm) – (d√2)]2, which gives d = 1.10 cm.

The third charge must be at  (+ 1.10 cm, – 1.10 cm).
If the third charge is displaced slightly along the line joining the charges, the charge toward which it
is moved will exert a larger attracting force, so the net force will be away from the equilibrium
position.  The equilibrium will be unstable.
If the third charge is displaced slightly away from the line joining the charges, both attracting forces
will have a component back toward the line, so the net force will be toward the equilibrium position.
The equilibrium will be stable.

-

+

+

x

( 3 cm, – 3 cm)

(d, – d)

y

      
r 
F 31

      
r 
F 32
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39. The forces on each quark are shown in the diagram.
For the positive “up” quark on the right, we have

∑Fx = F1 – F2 cos 60°
   = (46 N) – (23 N) cos 60° = 34 N;

∑Fy = F2 sin 60°
   = (23 N) sin 60° = +20 N.

When we combine these components, we get
F+ = 39 N  30°above the line joining the two “up” quarks

(the x-axis).
From symmetry, the force on the left “up” quark
will be 39 N  30°above the – x-axis.
For the negative “down” quark at the top, we have

∑Fx = F2 cos 60° – F2 cos 60° = 0;
∑Fy = – F2 sin 60° – F2 sin 60°

   = – 2(23 N) sin 60° = – 40 N.
The force on the “down” quark is

F– = 40 N  toward the center of the line joining the two “up” quarks.
Note that the sum of the three forces is zero, within the limitation of significant figures.

40. The three forces acting on the positive charge are shown in the diagram.
Their magnitudes are

F1  = F3 = k |q1| |q2|/(d/2)2

=  (9 × 109 N · m2/C2)(0.6 × 10– 6 C)(1.5 × 10– 6 C)/(9.0 × 10– 2 m)2

= 1.76 N;
F2  = k |q1| |q2|/(d sin 60°)2

=  (9 × 109 N · m2/C2)(0.6 × 10– 6 C)(1.5 × 10– 6 C)/(18× 10– 2 sin 60° m)2

= 0.59 N.
From the symmetry of the forces, we have

    
r 
F 1 +     

r 
F 3 = 0;

    
r 
F  =     

r 
F 2 = (0.59 N)    

ˆ j .
The net force is 0.59 N toward the opposite corner.

41 . (a ) From the symmetry of the charges and the distances, we have
F1 = F2 = F3 = F4 , so

∑    
r 
F  = 0,  the negative charge is in equilibrium.

(b) If the negative charge is moved slightly toward one of the positive
charges, the attractive force toward that charge will increase,
while the attractive force toward the opposite corner will
decrease.  The net force will be away from the equilibrium point,
so it will be unstable.

(c) If the negative charge is moved perpendicular to the plane a small
distance, each of the four attractive forces will have a component
pointing back toward the plane.  The net force, the sum of these four
forces, will be toward the equilibrium point, so it will be stable.
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+
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+
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42. From the symmetry of the charge distribution, we know that the forces on the dipoles will have the
same magnitude and opposite directions, so we consider one dipole.  Each charge of the dipole will
have two forces acting on it, as shown in the diagram.  From the symmetry of the charges and distances,
we see that the net force will be horizontal, and the force on the positive charge will be the same as
that on the negative charge.  The net force on the dipole is

   
Fnet = 2 F1 – F2 cos θ = 2

kq2

x 2 –
kq2

x 2 + (2d)2
x

x2 + (2d)2 1/2

=
2kq2

x 2
1 – 1

1 + 4d2 /x2
3/2 =

2kq2

x2 1 – 1 + 4d2/x2
– 3/2

.

When d <<  x, [1 + (4d2/x2)]–3/2 ˛ 1 – *(4d2/x2), so we have
   

Fnet ∼
2kq2

x2 1 – 1 – 3
2

4d
2

x2 = 12kd
2
q2

x4 .

43. (a ) The three forces acting on q are shown in the figure.
Their magnitudes are

F1 = F2 = k2qq/(2L)2 = !kq2/L2;
F3 = k4qq/(2L√2)2 = !kq2/L2.

The net force acting on q isr 
F net  = 

r 
F 1 + 

r 
F 2 + 

r 
F 3 = (– !kq2/L2) ˆ i  + (!kq2/L2) ˆ j  –

{[(!kq2/L2) cos 45°]   ̂  i  + [(!kq2/L2) sin 45°] ˆ j }

= (!kq2/L2){[– (2 + √2)/2] ˆ i  + [(2 – √2)/2] ˆ j }
=     (√3)kq2/2L2,  9.7° above the – x-axis.

(b) The four forces acting on Q are shown in the figure.
Their magnitudes are

F1 = F3 = k2qQ/(L√2)2 = kqQ/L2;
F2 = kqQ/(L√2)2 = kqQ/2L2;
F4 = k4qQ/(L√2)2 = 2kqQ/L2.

To find the net force, we use a rotated x′y′-coordinate
system, as shown on the diagram.  Thusr 

F net  = 
r 
F 1 + 

r 
F 2 + 

r 
F 3 + 

r 
F 4

= (kqQ/L2)    
ˆ j ′ – (kqQ/2L2)   ̂  i ′ + (kqQ/L2)    

ˆ j ′ – (2kqQ/L2)   ̂  i ′

= (kqQ/L2)[– 2.5    ̂  i ′ + 2    
ˆ j ′]

= 3.2kqQ/L2, 38.7° above the – x′-axis, or  3.2kqQ/L2, 6.3° below the – x-axis.

+

–

+

–

d

q

– q

x

θ

– q

q

d

d

d      
r 
F 2

      
r 
F 2

      
r 
F 1

      
r 
F 1

+
– 4q + 2q

– 2q + q

–

x

y

(L, L)
– +

      
r 
F 1

      
r 
F 3

+
– 4q + 2q

– 2q + q

Q
+

–

x

y

(L, L)
– +

x´y´

      
r 
F 2

      
r 
F 3

      
r 
F 4

      
r 
F 1



Chapter 21:  Electric Charge

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 21-13

44. (a ) Because the charge Q is symmetrically distributed about y = 0,
the force on q will be along the x-axis toward positive x.

(b) Because Q is distributed uniformly, the linear charge density
is λ = Q/2L, and the charge on a segment is

dQ = (Q/2L) dy .
(c) The force vector, shown in the figure, has magnitude

dF = (kq/r2) dQ =  (kqQ/2Lr2) dy .
(d) From part (a), we know that we add (integrate) the x-components:

   
Fx = dFx = kqQ

2Lr2 cos θ dy
– L

L

= kqQ
2L

D
D2 + y2

3/2 dy.
– L

L

(e) The result of the integration is
  

Fx =
kqQD

2L
y

D
2

D
2 + y2

1/2

– L

L

=
kqQ
2LD

L

D
2

D
2 + L

2 1/2 – – L

D
2

D
2 + L

2 1/2

=
kqQ

D D
2 + L

2 1/2 .

45. Because the line charge is symmetrically distributed about y = 0,
the force on q will be along the x-axis toward positive x.
The charge on the segment dy is

dQ = λ dy.
The force vector, shown in the figure, has magnitude

dF = (kq/r2) dQ = (kqλ/r2) dy.
To find the force, we add (integrate) the x-components:

   
F = dFx = kqλ

r2 cos θ dy.
– ∞

∞

From the figure, we see that r = x0/cos θ, and y = x0 tan θ.
We change variable to θ, with

dy = x0 sec2 θ dθ = (x0/cos2 θ) dθ:

   
F =

kqλ

x 0/cos θ
2 cos θ x0/cos2 θ dθ

– π/2

π/2

=
k qλ
x0

cos θ dθ
– π/2

π/2

=
kqλ
x0

sin θ
– π/2

π/2

=
2kqλ

x0
.

r 
F = (2kqλ/x0) ˆ i .

x

y

 q

O
x0

θ
r

      d
r 
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46. We use the figure from Problem 45, with the line charge from y = 0 to y = + ∞.  The force on q will have
both an x-component and a y-component.  We find each component by integrating, using the
same change of variable that we used in Problem 43:

   
Fx = dFx =

kqλ
r2 cos θ dy

0

∞

= kqλ

x0/cos θ
2 cos θ x0/cos2 θ dθ

0

π/2

= kqλ
x0

cos θ dθ
0

π/2

= kqλ
x0

sin θ
0

π/2

= kqλ
x0

;

Fy = dFy = – kqλ
r2 sin θ dy.

0

∞

= – kqλ

x0/cos θ
2 sin θ x0/cos2 θ dθ

0

π/2

= – kqλ
x0

sin θ dθ
0

π/ 2

= –
kqλ
x0

– cos θ
0

π/2

= –
kqλ
x0

.

The force on q is

    
r 
F  = (kqλ/x0)    ˆ i  – (kqλ/x0)    

ˆ j ,    or    (kqλ/x0)√2  45° below the x-axis.

47 . We align the rod along the x-axis with one end at the origin,
as shown in the figure.  The linear charge density is λ = Q/L,
so the charge on the element dx is dQ = (Q/L) dx.  All elements
of the rod produce a force in the + x-direction.  The total force is

F= i dFx =
kqλ
r2 i dx

0

L

=
kqQ

L
i dx

L – x + d 2

0

L

=
kqQ

L
i 1

L – x + d 0

L

=
kqQ

L
i 1

d
– 1

L + d
=

kqQ
d L + d

i.

The force on q is kqQ/d(L + d) away from the rod.

48. In Example 21-10 we found the electric force exerted on a point charge Q located on the axis of a
uniformly charged ring of charge q and radius R to be

F = kqQL/(R2 + L2)3/2,
where L is the distance between Q and the center of the ring. In our case there are two rings, each
exerting a force on Q. Since these two forces are opposite in direction and we want the net force to be
zero, we need to place Q where the two forces have the same magnitude. Let the distance between the
first ring and Q be L1, etc, then we have

F1 = F2 ;
kqQL1/(R1

2 + L1
2)3/2 = kqQL2/(R2

2 + L2
2)3/2.

Also, L1 + L2 = 100 cm. Plug in R1 = 25 cm and R2 = 40 cm and solve for L1:  L1 = 1.3 cm, i.e., the charge
should be placed 1.3 cm from the center of the ring with a radius of 25 cm (and 98.3 cm from the other).

x

y

 qLO

dx
    dx
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49. Let the charge on each ring of radius R be q and the center-to-center separation between the two rings be
2L. Draw an x-axis from the center of one ring  (at x = – L) to that of the other (where x = + L). By
symmetry the net force of both rings on a point charge Q is zero at x = 0, midway between the two rings.
To examine the stability of the equilibrium position at x = 0, imagine moving the point charge to a new
location x, away form (yet very close to) the equilibrium: |x| << L. The point charge is now a distance
(L + x) from the one ring and (L – x) from the other. The net force exerted on the point charge is now

 F = kqQ(L + x)/[R2 + (L + x)2]3/2 –  kqQ(L – x)/[R2 + (L – x)2]3/2.
For |x| << L we may use the approximation

(L + x)[R2 + (L + x)2]–3/2 ≈ (L + x)(R2 + L2 + 2Lx)–3/2

  = (L + x)(R2 + L2)–3/2 [1 + 2Lx/(R2+ L2)]–3/2

  ≈ (L + x)(R2 + L2)–3/2 [1 + (–3/2)2Lx/(R2 + L2)]
   ≈ L/(R2 + L2)3/2 + [(R2 – 2L2)/(R2 + L2)5/2]x     (up to the first power in x)

and
[R2 + (L – x)2]–3/2 ≈ L/(R2 + L2)3/2 – [(R2 – 2L2)/(R2 + L2)5/2]x.

        so
F ≈ [2kqQ(R2 – 2L2)/(R2 + L2)5/2]x = Cx.

If C > 0, then F(x) has the same sign as x. Thus if Q moves toward one of the two rings the net force on it
tends to push it further toward that ring –– the equilibrium is unstable. Similarly, if C < 0 then F(x)
and x have opposite signs, and the net force always tends to push the charge back to x = 0. The
equilibrium is stable. (Just think of the restoring force of a spring, F = – kx, where k > 0.)

 Thus the stability of the equilibrium depends on the sign of the expression
qQ(R2 – 2L2) .

If q and Q have the same sign, then the equilibrium is stable if R > √2L, and unstable if R < √2L.
If q and Q have opposite signs, then the equilibrium is stable if R < √2L, and unstable if R > √2L.

50. We pair an element of the ring dQ with the element diametrically opposite.  The two forces exerted on
q at the center will have the same magnitude but opposite directions.  Their sum will be zero, and thus,
for all of the elements of the ring, we haver 

F  = 0.
We assume that q and Q have the same sign.  If q is moved in the xy-plane, the dQ  toward which it
moves will exert a greater repulsion, while the dQ on the opposite side will exert a smaller repulsion.
The net force will be toward the center of the ring; the equilibrium is stable.  If q and Q have opposite
signs, the forces become attractive.  The net force will be away from the center of the ring; the
equilibrium is unstable.
The Coulomb force is an inverse-square force, like the gravitational force.  A mass anywhere inside a
uniform spherical shell of mass will experience no gravitational force.  A charge inside a uniformly
charged spherical shell will experience no electrical force.
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51. If we consider the plate to be a series of concentric rings, each ring
will produce a force away from the plate, as shown in the figure.
We choose a representative ring of radius r and thickness dr.
The area charge density of the plate is

σ = Q/πR2, so the charge on the ring is
dq = σ 2πr dr = (2Q/R2)r dr.

We use the result for a ring from Example 21–10 to find the total
force by summing (integrating) the forces from all of the rings:

F = dF =
2kqQL

R2
r dr

r2 + L2 3/2 i
0

R

=
2kqQL

R2 i – 1
r2 + L2 1/2

0

R

=
2kqQL

R2
– 1

R2 + L2 1/2 – – 1
L

i =
2kqQ

R2 1 – L
R2 + L2 1/2 i.

For the given data, we get

F =
2 9 × 109 N·m2/C2 0.65 × 10–6 C 1.6 × 10–6 C

8 × 10–2 m 2 ×

1 – 5 cm
8 cm 2 + 5 cm 2 1/2 i

= 1.4 N away from the center.

52. We can consider the plane sheet as a plate with an infinite radius.  The analysis of Problem 51 can be
used:

   
F = dF = kqσ L 2πr dr

r2 + L
2 3/2

0

∞

= 2πkqσL – 1
r2 + L

2 1/2

0

∞

= 2πkqσ L 1
L

= 2πkqσ

=
qσ
2ε0

away from the plane sheet.

53. Because the plates attract each other, equal and opposite forces are required to separate them.  The two
plates are so close that we can say that, to any small element of charge on one plate, the other plate
will appear infinite.  This neglects small effects at the edge.  The field of the plate is uniform due to
the charge density σ = Q/A.  From the result of Problem 52, the force on a small segment of charge ∆Q
due to the charge on the other plate is

∆F = ∆Q (Q/A)/2ε0.
When we add the forces on all of the charge elements, we have

F = ∑∆Q (Q/2ε0A) = Q2/2ε0A ;

0.1 N = /2(8.85 × 10–12 C2/N · m2)(0.05 m2), which gives  Q = 3.0 × 10– 7 C.

R

 q

L

r

x
      d

r 
F 

    dr
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54. From the result of Problem 52, we know that the force exerted by the
sheet of charge will be perpendicular to the sheet.
(a ) A positive charge is repelled by the sheet.  The cork ball will hang

at an angle where ∑    
r 
F  = 0.  From the diagram of the vector sum of the

forces, we have
tan θ = F/mg = (qσ/2ε0)/mg = qσ/2ε0mg

   = (0.8 × 10– 8 C)(1.2 × 10– 6 C/m2)/
[2(8.85 × 10–12 C2/N · m2)(8 × 10– 3 kg)(9.8 m/s2)]

   = 0.0069, so θ = 0.4° from the vertical away from the sheet.

(b) A negative charge is attracted by the sheet.  We find the angle from
tan φ = qσ/2ε0mg

    = (3 × 10– 8 C)(2 × 10– 6 C/m2)/
[2(8.85 × 10–12 C2/N · m2)(2 × 10– 3 kg)(9.8 m/s2)]

    = 0.026, so     φ = 1.5° from the vertical toward the sheet.

55. We place the wire in a vertical plane, as shown.  From the symmetry
of the charge distribution, we know that the force on q will be down.
The linear charge density of the wire is λ = Q/πR.  We use an element
dQ = λR dθ at an angle θ from the horizontal.  We find the net force
by summing (integrating) the vertical components:

   
F = dFy = kq

R
2 sin θ dQ

0

π

= kqQ
πR

3 sin θ R dθ
0

π

= kqQ
πR

2 – cos θ
0

π

= 2kqQ
πR

2 .

From the given data, we get
F = 2(9 × 109 N · m2/C2)(0.30 × 10– 6 C)(0.75 × 10– 6 C)/π(0.050 m)2 = 0.52 N.

56. (a ) All of the forces from the charges will lie along the line of the charges, with those from the
positive charges to the right and those from the negative charges to the left.  We allow for the
possibility that the charges are not the same.  We label a representative charge with m, where m
goes from 0 to n.  The distance from the mth charge to Q is D – md, and we can take the direction of
the force into account by using a factor of (–1)m.  Thus we have

   F = kQ
qm(– 1)m

D – md
2 .Σ

m = 0

n

When qm = q, we have F = kQq (– 1)m

D – md
2 .Σ

m = 0

n

(b) Because D >> md, we can use the approximation (D – md)– 2 ˛ D– 2[1 + (2md/D)]:
   F = kQ

qm(– 1)m

D2 1 + 2md
DΣ

m = 0

n

= kQ
D2 qm(– 1)mΣ

m = 0

n

+ 2kQd
D3 mqm(– 1)m.Σ

m = 0

n

When qm = q, we have

   F = kQq
D

2 (– 1)mΣ
m = 0

n

+ 2kQqd
D

3 m(– 1)mΣ
m = 0

n

, where we have different results for n being odd or even:

Fodd = 0 – 2kQqd
D

3
n + 1

2 = –
n + 1 kQqd

D
3 , and Feven = + kQq

D
2 + 2kQqd

D
3

n
2 = + kQq

D
2 + nkQqd

D
3 .
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57. By symmetry the net force,   
r 
F  =     

r 
F 1 +   

r 
F 2 +     

r 
F 3 +     

r 
F 4 ,  is

parallel to the x-axis, as     
r 
F 1 +     

r 
F 4 is along the positive

x-direction and     
r 
F 2 +     

r 
F 3  is along the negative x-

direction. So we only need to consider the x-component
of each force. We have

  F1x = F4x = F1 cos α
= {kq(3q)/[(1.5 cm)2 + y0

2]}{1.5 cm/
                          [(1.5 cm)2 +     y0

2]1/2}
= (4.5 cm)kq2/[(1.5 cm)2 + y0

2]3/2, and
F2x = F3x = – F2 cos β

= – {kq(3q)/[(0.5 cm)2 + y0
2]}{0.5 cm/

                                      [(0.5 cm)2 + y0
2]1/2}

= – (1.5 cm)kq2/[(0.5 cm)2 + y0
2]3/2.

Thusr 
F  = (F1x + F2x + F3x + F4x)

ˆ i  = (3.0 cm)kq2 {3/[(1.5 cm)2 + y0
2]3/2 – 1/[(0.5 cm)2 + y0

2]3/2} ˆ i .    

58. The charge is uniformly distributed over the entire sphere, with ρ = e/V = e/(4πR3/3). The portion of
the charge that is contained in the spherical region of radius r is then q = ρ (4πr3/3)  = er3/R3. According
to the textbook the net force exerted by the charged sphere on the negative point charge is then

F = – keq/r2 = – e2r/R3.
Set this to equal to ma, with a = d2r/dt2 the acceleration of the point charge of mass m:

– e2r/R3 = m d2r/dt2, or
m d2r/dt2 =  – (e2/R3)r.

This equation is analogous to the standard equation for a spring-mass system, namely, m d2x/dt2 =  – kx,
with x replaced by r  and k by ke2/R3. Thus the solution to our equation also yields a simple-harmonic
motion, equivalent to that with an effective spring constant of keff = ke2/R3. The frequency of the
oscillation is

f = ω/2π = (1/2π)(keff/m)1/2 = (1/2π)(ke2/R3m)1/2 .

59. We choose a differential charge element of one of the plates as dq = σ dA, which is a point charge.  We
find the force on dq exerted by the other plate from Problem 52:

dF = dq (σ/2ε0) = σ dA(σ/2ε0) .
The force per unit area is

dF/dA = σ2/2ε0 = (10– 5 C/m2)2/2(8.85 × 10–12 C2/N · m2) = 5.7 N/m2 .
The force per unit area is independent of the separation of the plates.  If the distance is doubled, the
force per unit area is  5.7 N/m2 .

60. The surface area of the cone is
A = πR(h2 + R2)1/2.

If the charge Q is uniformly distributed over its surface then the surface charge density is
σ = Q/A = Q/[πR(h2 + R2)1/2].

61. The surface charge density of Earth is
σ = Q/A = Q /4πR2.

The electric field just outside its surface due to this charge density is E = σ/2ε0, which exerts an
electrostatic force of

FE =  qE = q(σ/2ε0) = q(Q /4πR2)/2ε0

on a charge q placed near Earth’s surface. For mechanical equilibrium for the charge of mass m, set
FE = Fg;    q(Q /4πR2)/2ε0 = mg;  which gives

 q = 8πε0 R
2mg/Q

   = 8π (8.85 × 10–12 C2/N · m2)(6.37 × 106 m)2)(10 × 10– 3 kg)(9.8 m/s2)/(6 × 105 C) = 1.5  × 10–3 C.

+q +q–q –q
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62. Because 1 mm is very small compared to the dimensions of the plate, we can treat the plate as an
infinite plate with density σ = Q/L2 and use the result of Problem 52.  The upward electrical force is
balanced by the downward force of gravity:

FE = mg,    or     qσ/2ε0 = mg;
(0.8 × 10– 6 C)Q/[2(8.85 × 10–12 C2/N · m2)(0.60 m)2] = (1.5 × 10– 3 kg)(9.8 m/s2); so
Q = 1.2 × 10– 7 C.

If d = 2 mm,  the plate would still appear to be an infinite plate.  The electrical force would not depend
on distance, so Q remains 1.2 × 10– 7 C.
If d = 1 m, the plate would no longer appear to be infinite.  The inverse-square dependence of the
electrical force means that Q would have to be larger to exert the same magnitude force.  For large
distances, the plate would appear to be a point charge.

63. In the equilibrium position, the net force is zero.  From the diagram,
∑Fx  = FE – mg sin θ = 0;
kqq/¬2 = mg sin θ;
(9 × 109 N · m2/C2)(2 × 10– 8 C)2/(0.08 m)2 =  (0.5 × 10– 3 kg)(9.8

m/s2) sin θ, which gives
sin θ = 0.115,      θ = 6.6° .

64. There is a Coulomb force of repulsion between two like point charges:
  F  = (1/4πε0)qq/d2

= (9 × 109 N · m2/C2)(1.6 × 10–19 C)(1.6 × 10–19 C)/(8 × 10–15 m)2

=  3.6 N repulsion.

65 . (a ) The attractive Coulomb force provides the centripetal acceleration:
F = (1/4πε0)(e2/R2) = mv2/R, which gives v = (e 2/4πε0mR)1/2 .

(b) The magnitude of the angular momentum is
L = mvR = (e 2mR/4πε0)1/2 .

(c) We use the result of part (a):
v = (e2v/4πε0L)1/2, which gives  v = e2/4πε0L .

(d) We use the result of part (b):
R = L/mv = 4πε0L2/me2 .

(e) The time to go around the circle is the period:
τ = 2πR/v = 2π(4πε0L2/me2)/(e2/4πε0L) = 32π3ε0

2L3/me4 .

( f ) We are given       L = 1.05 × 10–34 kg · m2/s.    For the others, we have
v = (9 × 109 m/s2)(1.6 × 10–19 C)2/(1.05 × 10–34 kg · m2/s) =  2.2 × 106 m/s.
R = [1/(9 × 109 N · m2/C2)](1.05 × 10–34 kg · m2/s)2/(9.11 × 10–31 kg)(1.6 × 10–19 C)2  =  5.3 × 10–11 m.
τ = [2π/(9 × 109 N · m2/C2)2](1.05 × 10–34 kg · m2/s)3/(9.11 × 10–31 kg)(1.6 × 10–19 C)4 = 1.5 × 10–16 s .

66. The electrical force will be the repulsive force between the excess positive charge on the Sun and
Earth.  In each case, this will be the number of protons times δe.  Set

FE = Fg

(1/4πε0)(∆qsun∆qearth/R2) = (1/4πε0)(N sun δe Nearth δe/R2) = GMsunMearth/R2;
(9 × 109 N · m2/C2)(1.25 × 105 7) δ(1.15 × 104 4) δ(1.6 × 10–19 C)2 =

(6.7 × 10–11 N · m2/kg2)(2 × 103 0 kg)(6 × 102 4 kg), which gives
δ = 5 × 10–15 .
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67. (a ) The middle charge is repelled by each of the other charges.
The net force is

Fnet = F1 – F2 ;
Fnet = kq2[1/x2 – 1/(¬ – x)2]

= kq2[¬(¬ – 2x)/x2(¬ – x)2], away from the closer charge.
For the net force to be zero, we have
¬ – 2x = 0,    or     x = ¬/2,     as  expected from symmetry.

(b) We call the displacement from equilibrium ∆x = x – (¬/2).  When we substitute this into the
expression for the net force, we get

Fnet = kq2[¬(– 2 ∆x)/(¬/2 + ∆x)2(¬/2  – ∆x)2],   or
r 
F net = – 2kq2¬ ∆   

r 
x /[(¬/2)2 – (∆x)2]2 .

(c) When ∆x << ¬, we can drop the ∆x2 term in the denominator:

    
r 
F net = – kq2(32 ∆x/¬3)   ˆ i , which has the form of a restoring  spring force.

The oscillation frequency for small displacements is
f = (1/2π)(keff/m)1/2 =  (1/2π)(32kq2/¬3m)1/2 .

68. (a ) The net force will be

      
Fnet = F1 − F2 =

k q2

x2 −
kαq2

(x + l)2 = k q2 (x + l)2 −αx2

x2 (x + l)2 .

(b) Because the charges have opposite signs, the moving
charge must be outside of the two charges where the two
forces will  be in opposite directions and farther from the larger negative charge.  The net force will
be zero when

(x + ¬)2 – αx2 = 0,  or  (α – 1)x2 – 2¬x – ¬2 = 0.
The positive solution to this quadratic equation is

x = x0 =  ¬[(1 + α1/2)/(α – 1)] .
The negative solution corresponds to a position between the two charges, where the equal
magnitude forces will be in the same direction.

(c) If α = 40, the equilibrium position is
x0 = ¬[(1 + α1/2)/(α – 1)] = ¬[(1 + 401/2)/(40 – 1)] ≈ 0.1878¬. To find the restoring force, we consider

a small displacement ∆x from the equilibrium position:  x = x0 + ∆x, with |∆x| << ¬.  The net force
is

F(x) ≈ F(x0)  +  (dF/dx)∆x = 0 + {d[kq2/x2 – αkq2/(x + ¬)2]/dx} ∆x
 = 2kq2[–1/x3 + α/(x + ¬)3] ∆x
 ≈ 2kq2[–1/(0.1878¬)3 + 40/(0.1878¬ + ¬)3] ∆x
 ≈ – (254kq2/¬3)∆x
= – keffective ∆x.

Thus the effective force constant is 254kq2/¬3, and the frequency of oscillations is
f = (1/2π)(keffective/m)1/2 =  (1/2π)(254kq2/¬3m)1/2 .

69. From the analogy with the gravitational force, we know that if we replace distribution 2 with a point
charge q2 , the force exerted on q2 by distribution 1 is the same as if distribution 1 were a point charge.
From Newton’s third law, the force on distribution 1 by q2 is the reaction to the force on q2 , thus
distribution 1 can be treated as a point charge when there is an external point charge.
Similarly, if we replace distribution 1 with a point charge q1 , the force exerted on q1 by distribution 2 is
the same as if distribution 2 were a point charge.  From Newton’s third law, the force on distribution 2
by q1 is the reaction to the force on q1 , thus distribution 2 can be treated as a point charge when there is
an external point charge. Thus we can simultaneously treat both spherically symmetric distributions as
point charges to find the force between them.
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70. We find the force between the two rods by choosing a differential element for each rod, as shown in the
diagram.  The charge density of each rod is λ = Q/2L, so we have dQ = (Q/2L) dy and dQ′ = (Q/2L) dy′.
These two elements are equivalent to two point charges, so the force between them is

   dF = k dQ dQ′
r2 repulsion.

From symmetry, the force between the two rods must be perpendicular to
the rods.  We need to add (integrate) only the x-component

   F = dFx=
k dQ dQ′

r2 cos θ

=
– L

L

k Q
2L

2 dydy′
r2

R
r

– L

L

= kQ
2
R

4L2

– L

L

dy dy′

y– y′
2

+ R2
3/2

– L

L

repulsion.

If R >> L, to each rod the other rod will be equivalent to a point charge, so F = kQ2/R2 repulsion.

71. (a ) If we consider a pair of charges equidistant from x = 0, we
see that the x-component of the net force from the pair is zero.
Thus the total force from the line of charges will be in the
y-direction.  We need to add only the y-components of the
forces.  This component from the nth charge is

Fny  = (kqQ/r2) cos θ = (kqQ/r2)(R/r)
= kqQR/r3 = kqQR/[(na)2 + R2]3/2.

The total force from all charges is

F = FnyjΣn = – ∞

∞

= kqQR 1
na 2 + R2 3/2Σn = – ∞

j.

(b) When a → 0 and q → 0 such that q/a → λ, the distribution
becomes a line charge.  Each charge becomes dq; the location of the
nth charge, na, becomes x; and the separation of charges, a,
becomes dx.  The summation becomes   an integral:

F = k
q
a QR a

na 2 + R2 3/2Σn = – ∞

∞

j;

F = kλQR dx
x2 + R2 3/2

– ∞

∞

j.

We scale the integral by making the substitutions x = uR and dx = R du:

F = kλQR R du
uR 2 + R2 3/2

– ∞

∞

j = kλQ
R

du
u2 + 1 3/2

– ∞

∞

j .

Since u is dimensionless, so is the last integral. From the factor in front we see that   
r 
F  varies as 1/R.
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CHAPTER  22   Electric Field

Answers to Understanding the Concepts Questions

1. The moving truck picks up electric charge as it moves. Rubber tires are good insulators; the charge will
not automatically flow to the ground. There is danger that when enough charge builds up, a breakdown
can occur with the formation of a spark, and such a spark is extremely dangerous when gasoline is
present. For just this reason, tires are made today with materials that conduct well, and a dragging
chain is no longer necessary.

2. The direction of the electric field is tangent to the electric field lines. If two field lines intersect then
there are two possible tangents at the intersection, and yet the actual electric field can point only at one
direction.

3. The introduction of a gravitational field   
r 
g  =     

r 
F g/m is indeed useful for the same reasons that the

introduction of an electric field is useful. The field resembles that of the electric field in that in the
absence of matter (charge) the field lines are continuous, and their density represents the strength of
the field. It differs in that mass comes in only one sign: gravity is a uniquely attractive force, so tha t
field lines have only one end on matter. The other end must be at infinity, since there is no mass of
opposite sign for the line to attach to. In other words, there is no analogue of an overall neutral charge
distribution, in which lines start in part of the distribution and end elsewhere.

4. When placed against a metal wall, the excess charge on the balloon would induce a buildup of opposite
charge on the wall, causing the balloon to be attracted to it. When placed against an insulating wall
the excess charges on the balloon would polarize the molecules on the wall, and the resulting attractive
force would also make the balloon stick to the wall.

5. The electric field lines emerge from positive charges and end up at negative charges. The density of the
field lines indicates the strength (magnitude) of the field, which is proportional to the charge that
produces the field. Since five times the field lines leave one charge (q1) as end up at the other (q2), q1 is
positive and q2 is negative, and q1/ q2 = – 5.

6. Not really, since we may think of a negative charge –Q distributed uniformly over a spherical surface
at infinity to accompany our single positive point charge Q. The charge density everywhere is zero, so
that this depiction has no practical consequence other than the satisfying notion that the universe
involving single charges is still electrically neutral.

7. To the left of q1 the net force is to the left (nonzero), and in between q2 and q3 the net force is to the right.
There are two points where E = 0, one is in between q1 and q2 (–2 cm < x < +4 cm), and the other is
somewhere to the right of q3  (x > 10 cm).

8. The magnitude of the field of a dipole decreases with the distance r between  the center of the dipole
and the point of interest. In fact it can be shown that E (r) goes like 1/r3. While E (r) is nonzero for any
finite r, as r approaches infinity E (r) approaches zero.

9. We know that because the electric field above Earth’s surface points downward, toward Earth.
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10. In order to visualize a sphere with an induced dipole moment, think of the induction of a positive
charge +Q at the sphere's north pole and a negative charge –Q at the south pole in response to an
external field oriented along the north-south axis. Suppose that we now suddenly change the external
field so that it is now perpendicular to the north-south axis. The charges will move in response so that
now the dipole moment is oriented along the direction of the new external field. But since these charges
are not attached to the conductor  –– they move freely on the conducting surface –– their motion does not
induce a rotation of the sphere. With a long rod, the situation is different. Even if the charges are free
to move within the conductor, the shape of the conductor itself restricts the movement of the charges.
Thus there will be equal and opposite forces on the two ends, tending to rotate the rod. At the same
time, the original inducing field is now gone, and the charges rush back to each other under the
influence of the coulomb forces between them. Whether there is an actual motion of the rod depends on
how rapidly the charges move back together compared to how rapidly the new field acts.

11. The net electric charge present on the comb causes the molecules in the paper to polarize; so the region
that’s closer to the comb  has a net charge that’s opposite in sign to that of the comb, resulting in a net
attraction.

12. In principle, yes it can. The field lines of an electrostatic field can only begin and end where there is a
charge present. For example, suppose there is an isolated positive charge from which field lines
emerge. These field lines will not end unless there is a negative charge. If no other charges are present
the field lines will extend to infinity, even though the density of the field lines becomes  zero now that
they are spread out infinitely far from each other, meaning that the magnitude of the electric field
there is  zero.

13. The total charge of the water molecule is zero. The charge distribution shown in the figure suggests
that the electric field is that of two dipoles touching at one end. The superposition of two electric
dipole fields is again an electric dipole field (they both fall as 1/r3), except under very special
circumstances in which there is a cancellation, so that only the 1/r4 terms are left. This is not the case
here.

14. A small hole can be drilled on the negatively charged receptor plate to allow protons to pass through.

15. The density of the field lines (number of lines per unit cross-sectional area) represents the magnitude of
the electric field. Suppose there are a total of N field lines which emerge from a positive charge. A
distance r from the charge, these field lines are evenly distributed over a spherical surface of radius r,
so the density of the field lines there is N/A = N/4πr2, which is proportional to 1/r2, an accurate
representation of the r-dependency of the magnitude of the electric field. If the electric field changes
with r in any other power, then the field line density, which always goes like 1/r2, would no longer
represent the magnitude of the field.

16. The velocity field has features common to the electric field. Sources (like faucets) correspond to
positive charges, and sinks (like drains) correspond to negative charges. The velocity field is
represented by a vector at every point in space, just like the electric field. The major difference is that
in a liquid there is something that actually moves along the lines (look back at Chapter 16), whereas
the electric field lines do not represent motion except in the sense that a test charge would accelerate
along the tangent of a field line. The electric field is thus more like an "acceleration field," something
which is of little interest in the study of fluids.

17. An electric field line can only end up at a negative charge. It is therefore impossible to construct such an
arrangement for the electric field lines to be directed into a point where no charge is present.
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18. From the figure we can see that the forces will align the small dipole in such a way that the attraction
is maximized, or such that the potential energy is minimized. In other words, the small dipole will
align its electric dipole moment to be antiparallel to the large fixed dipole's electric dipole moment.

19. This configuration can indeed be thought of as two electric dipoles of equal strength pointing at
opposite directions. It is an example of an electric quadrupole. The field produced by this setup is not
exact zero. This is because the two dipoles, while equal in magnitude and opposite in orientation, are
slightly displaced from one  another so their fields do not completely cancel out, even though the net
field does drop rapidly as the distance r from the origin (as 1/r4, as can be shown).

20. The positive charges from these dipoles form an infinite, uniform sheet of charge, while the negative
charges form its own sheet, parallel to the first one, with exactly the opposite density of charge. The
net field is the superposition of those from the two sheets, so it must be zero.

21. Both the force of gravity and the electrical force are independent of the height. If the gravitational
force of attraction is stronger than the repulsive force, the pellet will fall down, albeit with an
acceleration smaller than that due to gravity. If the repulsive force is stronger, then the particle will
accelerate away from the plate, and go upwards.

22. Two forces are exerted on the pellet: the electrostatic repulsive force from the sphere, up; and the
gravitational force, down. The motion of the pellet depends on the relative strengths of these two
forces. If the charge on the sphere is relatively weak then the electrostatic repulsion cannot prevent
the pellet from colliding with the top of the sphere. If the electric repulsion is relatively strong then
the pellet will not be able to reach the surface of the sphere. Rather, it is accelerated (by gravity)
toward the sphere until it reaches the equilibrium position (where the electrostatic repulsion is equal
to its weight), then decelerates while continuing to move downward toward the sphere. Eventually it
comes to a momentary stop due to the strong repulsion of the sphere, and then starts to move back up,
accelerating towards (and past) the equilibrium point before decelerating to a stop. Afterwards the
motion repeats itself, with the pellet oscillating up and down above the sphere, reaching the greatest
speed upon passing the equilibrium position.

23. The electric field at the origin is now dominated by the charge q1 located at x1 = – 1 mm,  as q1 is so much
closer to the origin than any other charge. As a good approximation we may just calculate the field due
to q1 and neglect those due to q1 and q2 .

24. When the distance between a point and the surface of a sphere is much less than the radius of the
sphere, the sphere can be approximated as a plane from the perspective of that point. Such is the case
of Example 22-10.
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Solutions to Problems

1. The displacement 
r 
r  from the charge is shown in the diagram.

We find its magnitude from
  r2 = x2 + y2

= (3 cm)2 + (4 cm)2, which gives r = 5 cm.
We find its direction from

  tan θ = y/x
= (4 cm)/(– 3 cm) = – 1.33,

which gives θ = 127°.
The electric field at (2 cm, 4 cm) is

E = 1
4πε0

q
r2 r

= 9 × 109 N·m2/C2 5 × 10–6 C

5 × 10–2 m 2 cos θ i + sin θ j

= 1.8 × 107 – 0.60i + 0.80j N/C.

2. Because the origin is equidistant from the equal charges,
the electric fields will have the same magnitude:

Ei = (1/4πε0)[q/(a√2)2] = (1/4πε0)(q/2a2) .
The electric fields are shown in the diagram.
From the symmetry, we haver 

E  = ∑Eiy 
ˆ j  = – 4[(1/4πε0)(q/2a2)] cos 45° ˆ j 

=   – (1/4πε0)(q√2/a2) ˆ j .

3. Because we can treat the nucleus as a point charge, the field will be radial:

    
r 
E  = (1/4πε0)(q/r2)

= [(9 × 109 N · m2/C2)(79)(1.60 × 10–19 C)/(1 × 10– 9 m)2] = (1.14 × 101 1 N/C).
The force on an electron is

    
r 
F  = q    

r 
E  = – e    

r 
E 

   = – (1.60 × 10–19 C)(1.14 × 101 1 N/C) =  – (1.82 × 10– 8 N)  (toward the nucleus).

4. Because the electric field from each of the charges is along a
diagonal of the square, we choose the xy-coordinate system in the
following way: the direction from – 2µC to – 5µC is the positive x-
axis (east),
and the direction from +7 µC  to +3µC  is positive y-axis (north).
We haver 

E  = 
r 
E 1 + 

r 
E 2 + 

r 
E 3 + 

r 
E 4

    = (k/r2)(5µC – 2µC)   ̂  i  + (k/r2)(7µC – 3µC)    
ˆ j ,

         where r = a/√2, a = 0.040 m, and k = 9 × 109 N · m2/C2.
        The result is

    
r 
E  = [(3.4× 107 ˆ i ) + 4.5 × 107

    
ˆ j )] N/C

    = 5.6 × 106 N/C, 53° above the x-axis, i.e.,

    
r 
E  = 5.6 × 106 N/C, 53° north of east .

y

θ

+ x
q(5 cm, 0 cm)

(2 cm, 4 cm)

    
r 
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r 
E 

+

– q – q
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y
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–
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r 
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r 
E 2

      
r 
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r 
E 4
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5. For a regular hexagon, we have the angles shown.  The edge is L = 10 cm. For the distances from the
charges we have

r1 = r5 = L = 10 cm;   r2 = r4 = 2L cos 30° = 17.3 cm;  r3 = 2L = 20 cm.
We take advantage of the symmetry of the charges to simplify
the vector addition of the individual fields.  Because q1 = – q5 ,
and r1 = r5 , the magnitudes of   

r 
E 1 and     

r 
E 5 will be equal.

Their resultant will be in the y-direction:

    
r 
E 1 +     

r 
E 5 = 2[(1/4πε0)q1/r1

2] sin 60° ˆ j 

= 2[(9 × 109 N · m2/C2)(2 × 10– 6 C)/(0.10 m)2] sin 60°     
ˆ j 

= (3.12 × 106 N/C) ˆ j .
Because q2 = q4 ,  and r2 = r4 , the magnitudes of     

r 
E 2 and     

r 
E 4 will

be equal.  Their resultant will be in the x-direction:

    
r 
E 2 +     

r 
E 4 = 2[(1/4πε0)q2/r2

2] cos 30°   ̂  i 

= 2[(9 × 109 N · m2/C2)(3 × 10– 6 C)/(0.173 m)2] cos 30° ˆ i 

= (1.56 × 106 N/C) ˆ i .
For 

r 
E 3 we have

    
r 
E 3  = – [(1/4πε0)q3/r3

2] ˆ i 

= – [(9 × 109 N · m2/C2)(4 × 10– 6 C)/(0.20 m)2] ˆ i  = – (0.90 × 106 N/C) ˆ i .
The resultant electric field is

    
r 
E  =     

r 
E 1 +     

r 
E 2 +     

r 
E 3 +   

r 
E 4 +     

r 
E 5 = [(0.66 × 106   ̂  i ) + 3.12 × 106

    
ˆ j )] N/C

      = 3.19 × 106 N/C, 78° above the  + x-axis.

6. (a ) The electric field of q1 will be away from q1 with a magnitude
E1 = (1/4πε0)(q1/r1

2)
= (9 × 109 N · m2/C2)(1.5 × 10– 6 C)/(0.22 m)2

= 2.8 × 105 N/C  away from q1.
(b) This field produces an attractive force on q2:

F2 = q2E1 = (3.5 × 10– 6 C)(2.8 × 105 N/C) = 0.98 N toward q1.
(c) At the midpoint, both fields will be toward q2.  The resultant field is

E1 + E2 = [(1/4πε0)q1/r1
2] + [(1/4πε0)q2/r2

2]
= (9 × 109 N · m2/C2){[(1.5× 10– 6 C)/(0.11 m)2] + [(3.5 × 10– 6 C)/(0.11 m)2]}
=  3.7 × 106 N/C  toward q2.

7. (a ) With the charges on the x-axis, the electric fields produced by the charges will have the same
magnitude and point in the – x-direction.  The resultant field will ber 

E  = 2(1/4πε0)[q/(¬/2)]2 (–   ̂  i ) = – (1/4πε0)(8q/¬2) ˆ i .
(b) The fields produced by the charges will have the same magnitude and

point in opposite directions.  The resultant field will be     
r 
E  = 0.

(c) We take a representative point on the y-axis.  From the  diagram, we
see that the electric fields produced by the charges will have the
same magnitude, and the resultant field will point away from the
origin.  If we call the distance from the origin d, we have

E = 2(1/4πε0)(q/r2) cos θ = (1/4πε0)(2q/r2)(d/r)
   = (1/4πε0){2qd/[d2 + (¬/2)2]3/2} .

From the symmetry in the yz-plane, at a point d from the origin we have
E = (1/4πε0){2qd/[d2 + (¬/2)2]3/2} away from the origin.
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+
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8. (a ) The electric fields produced by the charges will have the same magnitude and point in opposite
directions.  The resultant field will be     

r 
E  = 0.

(b) Because there is no field at x = 0, there will be no force on the test charge.  If we displace the test
charge a small distance δ away from the x-axis, the two charges will produce a resultant field
that will point away from the origin.  This is similar to the situation shown in the diagram for
Problem 7.  Thus there will be a force on the test charge,   

r 
F  = q0   

r 
E , that will point away from the

origin.  The equilibrium will be unstable.

9.

r
–+ x

y

– qq
L     

r 
E −     

r 
E +

    
r 
p 

From the diagram, we see that the resultant electric field is
E = E+ + E– = 1

4πε0

q

r + (L/2) 2 i − 1
4πε0

q

r − (L/2) 2 i

=
q

4πε0

1
r + (L/2) 2 − 1

r – (L/2) 2 i

=
q

4π
r − (L/2) 2 − r + (L/2) 2

r + (L/2) 2 r − (L/2) 2 i

=
q

4πε0

− 2rL
r + (L/2) 2 r − (L/2) 2 i

= –
2qL

4πε0r3
1

1 + (L/2r) 2 1− (L/2r) 2 i .

We express this in terms of the dipole moment:

E =
2p

4πε0r3
1

1 + (L/2r) 2 1 − (L/2r) 2 .

When r >> L, the electric field along the axis of the dipole far from the dipole becomes
   

10. We treat the line of charges as n pairs symmetrically
placed about the y-axis.  From the diagram, we see
that a pair of charges produces an electric field parallel
to the x-axis.  For a pair with r2 = Y�2 + x2, we add the
x-components to get the magnitude of the field:

E = 2(1/4πε0)(q/r2)(x/r) = 2qx/4πε0(Y�2 + x2)3/2.
For all pairs, we have Y >>  x, so we get

E ˛ 2qx/4πε0Y�3.
Because the pairs alternate in sign, the direction of E
will alternate.  The electric field of the ith pair is

    
r 
E i = [(– 1)i2qxi/4πε0Y�3]    ̂  i , with i = 1, 2, 3, …, n.

The values of xi are d/2, 3d/2, 5d/2, …, so when we sum the n pairs, we get

    
r 
E  = ∑    

r 
E i  = ∑[(– 1)i2qxi/4πε0Y�3]   ̂  i  = (2q/4πε0Y�3)(d/2)(– 1 + 3 – 5 + 7 – …)    ̂  i .

For the first few terms, the result of the summation is – 1, + 2, – 3, + 4, … .  Thus the general result of the
summation is (– 1)nn.  The resultant electric field is

    
r 
E  = (2q/4πε0Y�3)(d/2)(– 1)nn ˆ i  =  (– 1)n(qnd/4πε0Y�3) ˆ i .

__
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11. We assume that the charge is displaced a small distance δ toward positive x.  The net electric field at
that point is

    
r 
E   = (1/4πε0)[Q/(a – δ )2](–     ̂  i ) + (1/4πε0)[Q/(a + δ )2]    ̂  i 

= (Q/4πε0){– [1/(a – δ )2] + [1/(a + δ )2]} ˆ i .
With δ  <<  a, we use the approximation 1/(a + δ )2 ˛ (1/a2) – (2δ/a3) :

    
r 
E  ˛ (Q/4πε0)(–1/a2 – 2δ/a3 + 1/a2 – 2δ/a3) ˆ i  = – (4Qδ/4πε0a 3) ˆ i .

The force on the test charge isr 
F  = q0

r 
E  = – (4Qδ/4πε0a 3)    ̂  i  = – (Q/πε0a 3)δ   ̂  i .

Thus the force is a restoring force, so      the equilibrium is stable .
The effective force constant of the system is

k eff = Q/πε0a 3, so the frequency is
f = (1/2π)(keff/m)1/2 = (1/2π)(Qq/πε0a 3m)1/2 .

12.

++ + 0.6 C + 1.8 C

13 . The density of field lines represents the magnitude of the electric field.  Because the electric field
between  parallel plates depends linearly on the charge density on the plates, the density of the field
lines should be  tripled.

14.

          

+ + + + +

15.

+ + + + +

– – – – –
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16. 

q

q

–q

–q

E

The combined electric field at the center of the turntable due to the two charges at 3- and 9-o’clock is
2kq/R2, pointing from the 3 o’clock position to the 9 o’clock position; while that due to the two charges
at 12- and 6-o’clock is also 2kq/R2 in magnitude,  pointing from the 12-o’clock position to the 6-o’clock
position. By symmetry the net electric field is

E = √2 (2kq/R2)
        = 2√2 (9 × 109 N · m2/C2)(8 × 10– 5 C)/(0.15 m)2 = 9.1 × 107 N/C,
pointing midway between the 6- and 9-o’clock positions (i.e., toward the 7:30 position).

17.

        

18.

      

x
q

+
q

+
q

+
q

+
q

+
q

+
q

+
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19. (a )   (b)

–

+–

+

–

+

–

+

(c)            (d)

– +– +–+– +

20. From the dependence of the field on 1/r2, close to any
single charge that charge will be the major contributor
to the field. At a distance of d = 0.080 cm from – q, the
electric field is dominated by that charge. So we have

    
r 
E  ≈ kq/d = (9 × 109 N · m2/C2)q/(8.0 × 10– 4 m)2

    = (1.4 × 101 6 N/C2)q  toward – q .
         Now consider the field a distance d3 = 35 m from – q.

Taking the – q position as the origin, east as + x and
north as + y, the positions of the two + q‘s are:

q1 (– 0.060 m, – 0.10 m),  and q2 (0.06 m, –0.104 m).
Therefore, the distance between q1 and (0, 35 m) is

          d 1 = [(0.060 m)2 + (35.10 m)2]1/2 = 35.1 m,  the same
as that between q2 and (0, 35 m). We have

 Ex = 0   (by symmetry) and
  Ey = E1y + E2y + E3 ≈ 2kq/d1

2  – kq/d3
2

     = (9 × 109 N · m2/C2)q[2/(35.1 m)2  – 1/(35 m )2] = (7.3 × 106 N/C2)q.  Thus
r 
E  =     [(7.3 × 106 N/C2 )q]ˆ j  (away from – q).

Note that this result can also be obtained by treating the system as one single net charge of + q, located
35 m from the point of interest. This is a good approximation since the size of the triangle is much less
than 35 m.

21. We find the magnitude of the electric field from an infinitely long line of charge from
E = λ/2πε0R

    = (0.3 × 10– 6 C/m)(2)(9 × 109 N · m2/C2)/(20 × 10– 2 m)
    = 2.7 × 104 N/C.

The electric field is

    
r 
E  = 2.7 × 104 N/C perpendicular to and away from the line.

+ +

–

+ q

– q

+ q
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22. The linear charge density is
λ = Q/L = (6 × 10– 6 C)/(0.25 m) = 2.4 × 10– 5 C/m.

On the x-axis (6 cm, 0 cm, 0 cm) the electric field is
dEx = (kλdz/z2 + x2)[x/(z2+ x2)1/2] = kλ x dz/(z2 + x2)3/2

Ex = 2kλx ∫ dz/(z2 + x2)3/2     (where z starts at 0, ends at 0.25/2  m)
= 2kλ (sin θf – sin θi)/x    (where θi = at 0o and θf =  64.4o)

                           = 2(9 × 109 N · m2/C2) (2.4 × 10– 5 C/m )(sin 64.4o – 0)/0.06 m
                           = (6.5 × 106 N/C),  so

    
r 
E 1 = Ex     ̂  i  = (6.5 × 106 N/C)ˆ i .

 At the same distance from the rod along the y-axis, at (0 cm, 6 cm, 0 cm),  the electric field will have
the same magnitude but will be in the y-direction:

    
r 
E 2 =     (6.5 × 106 N/C)ˆ j .

23.

+

Q

– – – – – – –

24. Each infinite plane sheet produces a uniform electric field.  If we assume both charge densities are
positive, between the sheets the fields will be in opposite directions:

E = E1 –  E2 = (σ1 – σ2)/2ε0  away from the first sheet, independent of L.
For the force on charge Q we have

F = QE = Q(σ1 – σ2)/2ε0  away from the first sheet .

25.

         

– –

–

–

––

–

–
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26. (a ) At a point in the plane of the circle outside the circle, the charge distribution will appear as a
line.  There can be no preference toward either side of the line, so the direction of the electric field
must be in the plane of the circle.  If the point is moved around the circle, the charge distribution
does not change, so the electric field is directed radially out from the center.

(b) From symmetry, the field along the axis of the circle is directed along the axis.  At a distance L,
with L >>  R, the charge appears to be a point charge, so we have

Eaxis = (1/4πε0)(Q/L2) = (1/4πε0)(2πRλ/L2) = (Rλ/2ε0L2),  L >>  R .

27.

–
–

–
–

–

–

28. Each plate produces an electric field parallel to the x-axis and away from the plate with a magnitude
E = σ/2ε0.

(a ) Between the plates, the fields from the two plates are in opposite directions, so we have
  E0,0,0  = (σ/2ε0) – (σ/2ε0) = 0 .

(b) Outside the two plates, the fields from the two plates are in the same direction, so we have
      

r 
E 8,0,0  = (σ/2ε0)    ̂  i  + (σ/2ε0)    ̂  i  = (σ/ε0)    ̂  i 

               = [(1.2 × 10– 6 C/m2)/(8.85 × 10–12 C2/N · m2)] ˆ i 

      =     (1.4× 105 N/C)ˆ i .
(c) The field outside the plates is independent of y and z, so we have

    
r 
E 8,1,2 = (1.4× 105 N/C)ˆ i .

29. We assume that the plates are large enough that they may be considered infinite plates.  Each plate
produces an electric field perpendicular to and away from the plate with a magnitude

E = σ/2ε0.
Outside the two plates, the fields from the two plates are in the same direction, so we have

E  = (σ/2ε0) + (σ/2ε0)
     = σ/ε0 perpendicular to the plates and away from them.

Between the plates, the fields from the two plates are in opposite directions, so we have
E = (σ/2ε0) – (σ/2ε0) = 0.
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30. Because we know the electric field for a hoop, we choose
a circular segment of length dx′ as the differential
element.  The charge on this segment is dq = (q/L) dx′.
The field of this element at a point x on the x-axis will
be in the + x-direction, with a magnitude

   
dE = 1

4πε0

x – x′ dq

R2 + x – x′
2 3/2

=
q

4πε0L
x – x′ dx′

R
2 + x – x′

2
3/2 .

We find the total field by integrating over the length of the tube:

E =
q

4πε0L
x − x′ dx′

R2 + x − x′ 2 3/2 i =
q

4πε0L
1

R2 + x − x′ 2 1/2 i
0

L

=
q

4πε0L
1

R2 + x − L 2 1/2 − 1
R2 + x2 1/2 i .

31 . (a ) From the symmetry of the charge distribution, we know
that the electric field on the z-axis is along the z-axis.
For a differential element we choose a ring of radius r and
thickness dr.  The charge on the ring is
dq = (Q/πR2)2πr dr = (2Qr dr)/R2.  Using the result for the
field of a hoop of charge, we integrate over the disk:

E = 1
4πε0

z0 dq

r2 + z0
2 3/2 k = z02Q

4πε0R
2

r dr
r2 + z0

2 3/2 k
0

R

= z0Q
2πε0R

2
−1

r2 + z0
2 1/2

0

R

k

= z0Q
2πε0R

2
1
z0

− 1
R2 + z0

2 1/2 k.

(b) To find the field in the limit z0 → ∞, we rearrange and use the approximation (1 + x)–1/2 ˛ 1 – (x/2):

E = Q
2πε0R

2 1 − 1 + R
z0

2 – 1/2
k = Q

2πε0R
2 1 − 1 + 1

2
R
z0

2
k

= Q
4πε0z0

2 k.

As we expect, the field is that of a point charge.
(c) To find the field in the limit R → ∞, we consider the result from part (a).  The second term will go

to zero, so we have   
r 
E  = Q/2πε0R2    ̂  k .

The charge density of the disk is σ = Q/πR2, so we can write   
r 
E  =     (σ/2ε0 )ˆ k .

As we expect, the field is that of an infinite plane.
The limits of parts (b) and (c) are not the same.  Part (b) is equivalent to the disk being a point
charge, while part (c) is equivalent to being very close to the disk.

z

x

y

L

R

x´

      d
r 
E 

  dx

x

y

z

R r

(0, 0, z0)
      d

r 
E 

  dr
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32. Let the length of the rod be L, then the radius of the semicircle is R = L/π. Because the charge
distribution is symmetric about the y-axis, we
know that the electric field at the center will be directed along the
– y-axis.  We choose a differential element of the rod at an angle θ
with charge

dq = Q (dθ/π).
We find the total field at the center by integrating the y-components
over the rod:

dEy = – (k dq sinθ/R2) = – k[(Q/π) dθ] sinθ/( L/π)2

  = – (πkQ/L2)  sinθ dθ ;
                    Ey = – (πkQ/L2)  ∫ sinθ dθ ,  where θ starts at 0º and ends at 180º.

Thusr 
E  = Ey    

ˆ j  = (– 2πkQ/L2)    
ˆ j  = [– 2π (9 × 109 N · m2/C2)(0.36 × 10– 6 C)/(0.18 m)2]    

ˆ j 

                           =     −(6.3 × 105 N/C)ˆ j .

33.

We find the electric field from the vector sum of the field of a rod
and the field of a point charge:

    
r 
E  =     

r 
E 1 +     

r 
E 2

    = (λ/2πε0R) sin θ0
ˆ i  – (q/4πε0R2) ˆ i 

    = (1/4πε0)[(2λ sin θ0)/R – q/R2]    ̂  i .
The angle for the endpoint of the rod is

θ0 = tan– 1 (L/R) = tan– 1 (1) = 45°.
The magnitude of the field is

  E = (9 × 109 N · m2/C2)[2(15 × 10– 6 C/m)(sin 45°)/(0.15 m) –  (3 × 10– 6 C)/(0.15 m)2]
    = 7.3 × 104 N/C.

The resultant field is

    
r 
E  = 7.3 × 104 N/C   toward the point charge.

x

y

θ
R

  dq

      d
r 
E 
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+

+
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34.

      

θ

θ

y

x

z

a R

x

      d
r 
E 

Imagine that the infinitely large sheet is made of infinitely long rods running in the z-direction in the
xz plane.  Consider one such rod, of width dx, a distance x from the z-axis.  The charge per unit length of
the rod is λ = dq/(length of the rod) = σ dx. According  to the result of Example 22-7, with the length of
the rod approaching infinity, the magnitude of the electric field dE due to the rod at a point on the y-
axis a distance a from the charged sheet is

dE = λ/2πε0R = σ dx/2πε0R.
By symmetry, the net field at this point is along the y-axis, so we only need to consider the y-component
of d    

r 
E :
dEy = dE cos θ =  (λ/2πε0R)(a/R)

 = σa dx/2πε0R2 = σa dx/2πε0(x2 + a2).
Integrate over the entire range of x:

E = ∫ dEy = (σa/2πε0) ∫ dx/(x2 + a2), where x ranges from  – ∞ to + ∞.
The integral in the last step is equal to (1/a) tan–1 (x/a), and with the upper- and lower-limits given
above it yields π/a. Thus

E = (σa/2πε0)(π/a) = σ/2ε0, as expected.

35. Since the electric field at the radius (R + h) vanishes, and the charge distribution within the radius is
spherically symmetrical, the total charge enclosed within the radius must be zero. This means that the
charge on the shell of thickness h must be + Q. Since R >> h the shell is very thin, so its radius is nearly
uniform, and is approximately equal to R. The volume of the shell is then

V ≈ 4πR2h .
The charge density on the shell follows as

ρ = Q/V ≈ Q/ 4πR2h .
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36.

To find the electric field at the point (0, D), we choose a differential
element of the rod, as shown in the diagram.  The charge of this
element is dq = (Q/L) dx.  We find the field produced by the element,
which has both x- and y-components, by integrating along the rod:

        

E = 1
4πε0

dq
r2 − cos θ i + sin θ j

x = 0

x = L

= Q
4πε0L

dx
r2 − cos θ i + sin θ j

x = 0

x = L

.

To perform the integration, we must eliminate variables until we have
one, for which we choose θ.
From the diagram we see that r = D/sin θ, and x  = D cot θ.  This gives

dx = – D csc2 θ dθ = – (D dθ)/sin2 θ.
The limits for θ are π/2 rad to θ0 = cos– 1 [L/(D2 + L2)].  When we make these substitutions, we have

E(0, D) = Q
4πε0L

(– dθ)/sin2 θ
D/sin θ 2 −cos θ i + sin θ j

π/2

θ 0

= Q
4πε0LD

dθ cos θ i −sin θ j
π/2

θ 0

= Q
4πε0LD

sin θ i + cos θ j
π/2

θ 0

= Q
4πε0LD

sin θ 0 − 1 i + cos θ 0 − 0 j ;

E(0, D) = Q
4πε0LD

D
D2 + L2 – 1 i + L

D2 + L2 j .

Because the point (L/2, D) is opposite the midpoint of the rod, we know that the field there will have
only a y-component.  Instead of doing another integration, we use the result from the text:

E(L/2, D) = 2λ
4πε0D

L/2
D2 + L/2 2

j = Q
4πε0D

2
4D2 + L2

j .

x

y

x

θ

L

r
(0, D) (L/2, D)

      d
r 
E 

dx

dq
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37. (a ) We choose a strip of the square parallel to the y-axis,
so that we can use the result for the electric field of a
rod.  The strip has length 2L and thickness dx.  The
charge of the strip is dq = σ 2L dx, which gives a
linear charge density λ = σ dx.
The magnitude of the field produced by the strip is

   dE = σ dx
2πε0r

L
L

2 + r2
.

From the diagram, we see that the charge distribution
is symmetric about the y-axis.  The resultant field will
be in the z-direction, so we integrate the z-components
for the region from x = – L to x = L.
From the diagram, we have cos θ = z0/r.

E = σ dx
2πε0r

L
L2 + r2

cos θ k
x =—L

x = L

= σLz0
2πε0

dx
r2L2 + r2

k
x =—L

x = L

= σLz0
2πε0

k dx
x2 + z02 L2 + x2 + z02

.
x =—L

x = L

(b) We can simplify the integral by doubling the z-components for the region from x = 0 to x = L:

E = 2 σ dx
2πε0r

L
L2 + r2

cos θ k .
x = 0

x = L

We choose θ for the variable by using x = z0 tan θ,  dx = (z0/cos2 θ) dθ, r = z0/cos θ.
The limits for θ are 0 and θ0 , which is determined from tan θ0 = L/z0.
The integral becomes

E = 2σ
2πε0

z0/cos2 θ dθ
z0/cos θ

L
L2 + z0/cos θ

2
cos θ k

0

θ 0

= σ
πε0

cos θ dθ

cos2 θ + z0/L
2
k .

0

θ 0

As L → ∞, the denominator in the integrand becomes cos θ, so the integral is ∫dθ.    We find the
upper limit of the integral from tan θ0 → ∞, which gives θ0 = π/2.  The value of the integral is π/2,
and the field becomes

    
r 
E  → (σ/πε0)(π/2)   ̂  k  =  (σ/2ε0 )ˆ k .

(c) As z0 → 0, the denominator in the integrand becomes cos θ, so the integral is ∫dθ.    We find the
upper limit of the integral from tan θ0 → ∞, which gives θ0 = π/2.  The value of the integral is π/2,
and the field becomes

r 
E  → (σ/πε0)(π/2)   ̂  k  =     (σ/2ε0 )ˆ k .

This is the result from part (b).  In both cases, the square looks like an infinite plane.

38. Because the electric field produced by the infinite plate is constant, there will be a constant downward
force on the charge and thus constant acceleration of the pellet:

a = |q|E/m = |q|σ/2ε0m.
We find the speed from

v2 = v0
2 + 2a(y – y0) = 0 + 2(|q|σ/2ε0m)(d – 0)

      = [(1.08 × 10– 6 C)(2.17 × 10– 6 C/m2)/(8.85 × 10–12 C2/N · m2)(0.555 × 10– 3 kg)](0.175 m),
which gives  v = 9.1 m/s.

r

x
L

θ

L

y

z

z0

x

      d
r 
E 

  dx
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39. The force from the electric field produces the acceleration:
qE = ma;
q(850 N/C) = (120 × 10– 6 kg)(4.6 m/s2),  which gives      q = 6.5 × 10– 7 C = 0.65 µC.

40. The uniform electric field from the sheet produces a force on the electron toward the sheet which gives
the electron an acceleration:

qE = qσ/2ε0 = ma,  or  a = qσ/2ε0m.
We find the velocity from

v = v0 + at = 0 + (qσ/2ε0m)t
    = (1.6 × 10–19 C)(6.1 × 10– 9 C/m2)/[2(8.85 × 10–12 C2/N · m2)(9.1 × 10–31 kg)](17.5 × 10– 9 s)
    =  1.1 × 106 m/s  away from the sheet.

We check the distance traveled by the electron:
d = !(v + v0)t = !(1.01 × 106 m/s)(17.5× 10– 9 s) = 9.6 × 10-3 m.

41. Because the electric field produced by the infinite plate is constant, there must be a constant upward
force on the charge that balances the downward force of gravity.  To produce an upward force on a
positive charge, the plate must have a positive charge.  We find the density from

qE = q(σ/2ε0) = mg;
(8.5 × 10– 7 C)σ/2(8.85 × 10–12 C2/N · m2) = (0.83 × 10– 3 kg)(9.8 m/s2), which gives
σ = 1.7 × 10– 7 C/m2 .

42. Because we can treat the nucleus as a point charge, the field will be radial:
E = [(1/4πε0)(q/r2)]

= [(9 × 109 N · m2/C2)(79)(1.60 × 10–19 C)/(10–11 m)2] = (1.14 × 101 5 N/C) radial .
The acceleration of the alpha particle is

a = QE/m = 2(1.60 × 10–19 C)(1.14 × 101 5 N/C)/[4(1.67 × 10–27 kg)]
    =  5.4 × 102 2 m/s2  (away from the nucleus).

43. The force produced by the electric field of the wire on the negative charge is toward the wire and
provides the centripetal force:

F = mv2/r;
q(λ/2πε0r) = mv2/r, which gives a speed v = (qλ/2πε0m)1/2 , which does not depend on r.

44. The force produced by the electric field of the wire on the negative charge is toward the wire.
We choose the x-axis along the wire and the y-axis perpendicular to the wire to apply ∑    

r 
F = m

r 
a :

x-component: 0 = m d2x/dt2, which we normally write as  m d2x/dt2 = 0;
y-component: – qλ/2πε0y = m d2y/dt2, which we normally write as  m d2y/dt2 = – qλ/2πε0y .

45 . The force produced by the electric field of the wire on the negative charge is toward the wire and
provides the centripetal force:

F = mv2/r;
q(λ/2πε0r) = mv2/r, which gives a speed v = (qλ/2πε0m)1/2.

The period of the orbit is
T = 2πr/v = [2π/(qλ/2πε0m)1/2]r.

If the centripetal force is provided by a point charge, we have
(1/4πε0)(qQ/r2) = mv2/r, which gives
v = (qQ /4πε0mr)1/2.

The period of the orbit is
Tpoint charge = 2πr/v = 2π(4πε0m/qQ)1/2r3/2, which has a different r dependence.
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46. The electric field of each plate is up, and the electric force must be up to balance the force of gravity;
therefore the charge must be positive.  Because the acceleration is zero, we have

qE+ + qE– = mg;
q = mg/[(σ+/2ε0) + (σ2/2ε0)] = 2mgε0/(σ+ + σ–)

   = 2(5.6× 10– 3 kg)(9.8 m/s2)(8.85 × 10–12 C2/N · m2)/[(1.6 + 0.22) × 10– 6 C/m2] = 5.3 × 10– 7 C.

47. We use the coordinate system from Example 22–12.  The initial horizontal component of the velocity is
v0x = (v0

2 – v0y
2)1/2 = [(5.0 × 106 m/s)2 – (2.0 × 105 m/s)2]1/2 = 5.0 × 106 m/s.

The time for the electron to travel between the plates is
t1 = L1/v0x = (3 × 10– 2 m)/(5.0 × 106 m/s) = 6.0 × 10– 9 s.

The deflection at this time is
y1 = v0yt1 + !at1

2
 = v0yt1 + !(qE/m)t1

2

      = (2.0 × 105 m/s)(6.0 × 10– 9 s) + ![(1.6 × 10–19 C)(103 N/C)/(9.1 × 10–31 kg)](6.0 × 10– 9 s)2

      = 4.4 × 10– 3 m.
The vertical component of the velocity as the electron leaves the plates is

v1y = v0y + at1 = v0y + (qE/m)t1

 = (2.0 × 105 m/s) + [(1.6 × 10–19 C)(103 N/C)/(9.1 × 10–31 kg)](6.0 × 10– 9 s)
 = 1.25 × 106 m/s.

After it leaves the plates, the electron travels in a straight line with a direction given by
tan θ = v1y/v0x = (1.25 × 106 m/s)/(5.0 × 106 m/s) = 0.25.

The deflection while the electron travels this straight line is
y2 = L2 tan θ = (12 × 10– 2 m)(0.25) = 3.0 × 10– 2 m.

The total deflection is
y = y1 + y2 = (0.44 × 10– 2 m) + (3.0 × 10– 2 m) = 3.4 × 10– 2 m =  3.4 cm.

48. The electric field between the oppositely-charged parallel plates is uniform and will produce a
constant acceleration:

qE = eσ/ε0 = ma,  or  a = eσ/ε0m.
For a constant acceleration over the separation of the plates d, we have

v2 = v0
2 + 2ad;

(3.0 × 107 m/s)2 = (1.6 × 106 m/s)2 +
2[(1.6 × 10–19 C)σ/(8.85 × 10–12 C2/N · m2)(9.1 × 10–31 kg)](2 × 10– 2 m),

which gives σ = 1.1 × 10– 6 C/m2 .

49. The electric field produced by the plate is
E = σ/2ε0

    = (10– 6 C/m2)/2(8.85 × 10–12 C2/N · m2) = 5.6 × 104 N/C.
Using the force diagram, we find the equation of motion for
the tangential direction:

– (mg + qE) sin θ = m d2s/dt2.
If the angle is small, we have

sin θ ˛ θ = s/L, and the equation of motion becomes
– [(mg + qE)/L]s = m d2s/dt2.

This is the equation for simple harmonic motion.  The effective force constant is
k eff = (mg + qE)/L.

The angular frequency of the motion is
ω = (keff/m)1/2 = [(mg + qE)/Lm]1/2

     = {[(5 × 10– 3 kg)(9.8 m/s2) + (2 × 10– 6 C)(5.6 × 104 N/C)]/(1 m)(5 × 10– 3 kg)}1/2 = 5.7 s– 1 .

–

s

L

q

++++++

θ

    
r 
E 

    
r 
T 

    m
r 
g 

    q
r 
E 
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50. To find the force on the proton, we need the electric field.  We write the linear dependence on x and find
the constants:

E = E0 – bx;
500 N/C = E0 – 0, which gives E0 = 500 N/C;
0 = 500 N/C – b(3 m), which gives b = (500/3) N/C · m.

Because the electric force is the only force on the proton, the equation of motion is
m d2x/dt2 = q(E0 – bx).

If we change variable to  x′ =  x  – 3, d2x′/dt2 = d2x/dt2, and we have
m d2x′/dt2 = q(E0 – bx′ – 3b) = – qbx′.

We rewrite this as
d2x′/dt2 = – (qb/m)x′ = – ω2x′,

which is the equation for simple harmonic motion, with angular frequency
ω = (qb/m)1/2 = [(1.60 × 10–19 C)(167 N/C · m)/(1.67 × 10–27 kg)]1/2 = 1.26 × 105 s– 1.

We write the solution:
x′(t) = A sin(ωt + δ ), and v(t) = Aω cos(ωt + δ ),

and determine A and δ from the initial conditions:
x′(0) = – 3 m = A sin(0 + δ );   v(0) = 5 × 105 m/s = – Aω cos(0 + δ ).

The solution of these two equations is
A = 5.0 m and δ = – 37°. 

The time to traverse the region is the time when x  = 3 m, or x′= 0:
0 = (5.0 m) sin(ωt – 37°), which gives ωt = (37°)(π/180°),  or
t = (37°)(π/180°)/(1.26 × 105 s– 1) = 5.1 × 10– 6 s .

51. The torque on the dipole is
r 
τ  = 

r 
p  ×     

r 
E  = qL(cos 45° ˆ i  + sin 45° ˆ j ) × E ˆ i 

   = – qLE sin 45°     ̂  k 

    = (2 × 10– 6 C)(0.10 m)(10 N/C) sin 45°     ̂  k 

    =      −(1.41× 10−6 N ⋅m) ˆ k .

52. The torque is directly proportional to the magnitude of the dipole moment.  The new dipole moment   is
p2 = q2L2 = (5q1)(3L1) = 15q1L1 = 15p1 .

The torque will be increased by a factor of 15.

53 . We estimate the field along the bisector:
E ˛ (1/4πε0)(p/r)3

    = [(9 × 109 N · m2/C2)(6 × 10–30 C · m)/(3 × 10– 9 m)3]
                        = 2 × 106 N/C.

54. From Problem 51, the torque acts to align the dipole with the electric field.  As the dipole passes the
x-axis, the torque direction will reverse.  The dipole will oscillate around the direction of the electric
field.  The work done by the electric field is

W  = – ∆U = – [(–    
r 
p   ·     

r 
E ) f – (–    

r 
p   ·     

r 
E ) i]

= – [(– pE) – (– pE cos 45°)]
= qLE(1 – cos 45°)
= (2 × 10– 6 C)(0.10 m)(10 N/C)(1 – 0.707)
= 5.9 × 10– 7 J .
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55. Each dipole is a pair of charges q separated by a distance L, such
that p = qL.  To find the force on the dipole on the right, we find
the electric field at each of the charges produced by the charges
of the other dipole.  The field at the positive charge is

   E+ = 1
4πε0

q
r 2 – q

r + L
2 = q

4πε0r2 1 – 1

1 + L/r
2 to the right.

The field at the negative charge is
   E– = 1

4πε0

q

r – L
2 – q

r2 = q
4πε0r

2
1

1 – L/r
2 – 1 to the right.

The force on the dipole is
   

F = qE+ + (– q)E– = q2

4πε0r
2

1 – 1
1 + L/r

21 – 1
1 – L/r

2 + 1 to the right.

Because L <<  r, we make use of the approximation (1 ± x)– 2 ˛ 1 — 2x + 3x2 — … and expand the terms:

  
   

F∼
q2

4πε0r
2 1 – 1 – 2L

r + 3 L
r

2

– 1 + 2L
r + 3 L

r
2

+ 1 = q2

4πε0r
2 – 6 L

r
2

= – 6q2L
2

4πε0r
4 = – 6p2

4πε0r
4 ( attraction).

56. The potential energy of a dipole in an electric field is U = –     
r 
p   ·     

r 
E .  The maximum energy occurs when   

r 
p 

and     
r 
E  are in opposite directions, and the minimum energy occurs when 

r 
p   and   

r 
E  are parallel:

Umax = pE, Umin = – pE,  and
∆U = 2pE;
4.4 × 10–25 J = 2p(104 N/C), which gives  p = 2.2 × 10–29 C · m.

57 .        

      

–

+ +

++
  outside      

r 
E = 0

58.

      

+

+

––

––
+

+

+

+

+

+

+

– + – +
– q + qL – q+ q L

r
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59.

+

+ + + ++ + ++

60. In the region outside a uniformly charged sphere, the electric field is the same as that of a point
charge:

E = (1/4πε0)(q/r2) .
For the cork ball, we have

E = (9 × 109 N · m2/C2)(3.5 × 10– 9 C)/(1.2 × 10– 2 m)2 = 2.2 × 105 N/C.
For the uranium nucleus, we have

E = (9 × 109 N · m2/C2)(28)(1.6 × 10–19 C)/(5 × 10–15 m)2 = 1.6 × 102 1 N/C.

61. We choose the coordinate system shown in the diagram, with the
rods aligned parallel to the z-axis.
(a )

r 
E  = 

r 
E + + 

r 
E – = (λ/2πε0)[1/(y –  R/2) –  1/(y + R/2)]    

ˆ j 

    =     { (λR /2πε0 )/[ y2 − (R/ 2)2]}ˆ j .
(b) We see from the diagram that the symmetry along the x-axis

means that the resultant field will have only a y-component.
We find the field by doubling the y-component from one rod:

    
r 
E  = – 2E– sin θ ˆ j  = – (2λ/2πε0r)[(R/2)/r] ˆ j 

       = – (λR/2πε0r2)    
ˆ j  = −{ (λR /2πε0 )/[ x2 + (R/ 2)2]}ˆ j .

62. The electric field at the positive rod produced by the negative rod is
E = λ/2πε0R toward the negative rod.

The force on a charge Q of the rod is F = QE, so the force per unit length is
F/L = (Q/L)E

   = λ(λ/2πε0R) = λ2/2πε0R (attraction).

63. Each infinite plate produces a constant field perpendicular to the plate.  The total electric field isr 
E  = (σ1/2ε0)    

ˆ j  + (σ2/2ε0)    ̂  i .
The force produced by this field on the particle causes a constant acceleration:

    
r 
a  = q    

r 
E /m = (q/2ε0m)(σ1    

ˆ j  + σ2    ̂  i ) .
If the particle starts from rest, its position is

    
r 
r  =     

r 
r 0 +     

r 
v 0t + !    

r 
a t2 = (1 m)   ̂  i  + (1 m)    

ˆ j  + 0 + (q/4ε0m)(σ2    ̂  i  + σ1    
ˆ j )t2

   = {1 + [(1 × 10– 7 C)/4(8.85 × 10–12 C2/N · m2)(1 × 10– 3 kg)](+ 3 × 10– 6 C/m2)t2} ˆ i  +
{1 + [(1 × 10– 7 C)/4(8.85 × 10–12 C2/N · m2)(1 × 10– 3 kg)](– 5 × 10– 6 C/m2)t2}    

ˆ j 

   =      [(1+ 8.5t2 )ˆ i + (1− 14t2 )ˆ j ] m,  with t in s .

–

+

θ x

y

r

R/2

R/2

    
r 
E +

    
r 
E −

    
r 
E −     

r 
E +

    
r 
E 
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64. (a ) At the origin the fields from the line charges are in opposite
directions.  From the symmetry of the charges, we see that
the total field at the origin is

    
r 
E 0 =     

r 
E 1 +     

r 
E 2 = 0.

(b)  The force on a charge at the origin is

    
r 
F 0 = q    

r 
E 0 = 0.

(c) We find the angles and distances for each line charge:
tan θ1 = 3/(4  – 1), which gives θ1 = 45.0°;
tan θ2 = 3/(4  + 1), which gives θ2 = 31.0°;
r1

2 = (3 cm)2 + (3 cm)2, which gives r1 = 4.24 cm;
r2

2 = (5 cm)2 + (3 cm)2, which gives r2 = 5.83 cm.
The total field is

    
r 
E  =     

r 
E 1 +     

r 
E 2

    = (λ/2πε0r1)(cos θ1 ˆ i  – sin θ1 ˆ j ) + (λ/2πε0r2)(cos θ2 ˆ i  – sin θ2 ˆ j )

    = (λ/2πε0){[(cos θ1     ̂  i  – sin θ1   
ˆ j )/r1]  +  [(cos θ2     ̂  i  – sin θ2     

ˆ j )/r2]}
    = [(5 × 10– 6 C/m)/2π(8.85 × 10–12 C2/N · m2)]

[(cos 45.0°     ̂  i  – sin 45.0°   
ˆ j )/(4.24 × 10– 2 m)  +  (cos 31.0°   ̂  i  – sin 31.0°   

ˆ j )/(5.83  × 10– 2 m)]

    =  (2.8 × 106 N/C)ˆ i − (1.5 × 106 N/C)ˆ j .
The force on the charge isr 

F  = q
r 
E  = (6 × 10– 6 C)[(2.8  × 10– 6 N/C)    ̂  i  – (1.5  × 10– 6 N/C)   

ˆ j ]

    = (17ˆ i − 9ˆ j ) N .

65. (a ) The electric field of the plate is perpendicular to and away from the plate.  The force on the
positive charge is away from the plate:

F = qE = qσ/2ε0

    = (1.6 × 10–19 C)(8.0 × 10– 6 C/m2)/2(8.85 × 10–12 C2/N · m2)
    =  7.2 × 10–14 N away from the plate.

(b) We find the work from the work-energy theorem:
 W = ∆K

= 0 – (2 × 106 eV)(1.6 × 10–19 J/eV) =  – 3.2 × 10–13 J .
(c) Because the work is done by the electric field, we have

W = – Fd
– 3.2 × 10–13 J = – (7.2 × 10–14 N)d, which gives  d = 4.4 m.

66. (a ) When there is no charge on the drop, the forces acting on the drop are the downward force of
gravity and the upward drag force;

mg – Fdrag = 0,   or
ρ()πr3)g = 6πηrv0 , which gives v0 = 2r2ρg/9η.

(b) With a positive charge, the electric force is up, so we have
mg – Fdrag – qE = 0,    or
qE = mg – Fdrag = ρ()πr3)g – 6πηrv1.

If we use the result of part (a), we get
qE = 6πηrv0 – 6πηrv1 = 6πη(v0 – v1)r = 6πη(v0 – v1)(9v0η/2ρg)1/2, which gives
q = [18π(v0 – v1)/E](v0η3/2ρg)1/2.

(c) Because the droplet is stationary, there is no drag force, so we have
qE = mg =  ρ()πr3)g;
E = )πr3ρg/q = )π(2.0 × 10– 6 m)(0.85 × 103 kg/m3)(9.8 m/s2)/(1.6 x10–19 C) = 1.74 × 106 N/C.

+ +

λ θ1θ2

(1, 0)(–1, 0)

(4, –3)

x (cm

y (cm)

λ

      
r 
E 2

      
r 
E 1
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67.

+
q
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+
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+
+

+
+

+

–

(b)

+

+ + + ++ +

q

– q

(c)

–
+

–
+

–
+

–
+

68. We write the relation as
t = λαqβmγRδε0

µ.  When we substitute the dimensions, we get
[t] = [λ]α [q]β [m]γ [R]δ [ε0]µ;
[T] =  [QL– 1]α [Q]β [M]γ [L]δ [Q2T2M– 1L– 3]µ.

We equate the exponents for each dimension:
Q: 0 = α + β + 2µ;
L: 0 = – α + δ – 3µ;
M: 0 = γ – µ;
T: 1 = 2µ.

We have four equations with five unknowns.  Two we can find directly:
µ = !, γ = !.

To find the others we must use the fact that the field of a line charge depends on λ/ε0.  This is the only
contributor to the force, so we expect the exponent of λ to be the negative of the exponent of ε0:

α = – µ =  – !; which gives β = – !, and δ = 1.
When we use these results, we have

t ∝ R(mε0/qλ)1/2 .

69. By symmetry the net force exerted on one rod by the other is
perpendicular to each rod. Also, the forces from the other rod on
the two charges at points A and B are the same. So the force
between the two rods is

F = 2(F1 – F2 sin θ ) = 2[kq2/r1
2 – (kq2/r2

2)(r1/r2)]
      = 2(9 × 109 N · m2/C2)(2.2 × 10– 4 C)2 {1/(0.18 m)2 –

                        (0.18 m)/[(0.18 m)2 + (0.20 m)2]3/2}
    = 1.9 × 104 N, directly away from each other.

The net torque  on each rod is zero, since each of the two charges on
each rod receives the same amount of force and is equidistant form
the axis.

B

+q

–q –q

F1

θ

r1

r2

A

+q

      
r 
F 2
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70. Choose an xy coordinate system originated at the point where the electron enters the region, with the
x-axis pointing east and y-axis pointing north. The motion in the x-direction is uniform, so

x = vx t = (v0 cos θ )t , where v0 =  3 × 106 m/s  and θ = 40º.
In the y-direction there is an acceleration:

a y = Fy/m = – eE/m, so
y = v0y t + !ayt2 = (v0 sin θ )t +!(– eE/m)t2.

When the electron strikes the bottom plate y = 0, whereupon
t = 2mv0 sin θ /eE .  Plug this into the expression for x to obtain
x = (v0 cos θ )(2mv0 sin θ /eE) = mv 0

2 sin (2θ)/eE  .
Note that this is analogous to the range formula for a projectile, with g replaced by eE/m. 

71. We are given the force

F =
qλ0

2πε 0L
ln R − (L/2)

R + (L/2)
+ R 1

R − (L/2)
− 1

R + (L/2)
i.

If we change variable to x = L/2R, the magnitude of the force becomes
   

F = qλ0

2πε0L
ln 1 – x

1 + x
+ 1

1 – x
– 1

1 + x
= qλ0

2πε0L
ln 1 – x – ln 1 + x + 1

1 – x
– 1

1 + x
.

Using the approximate expansions for small x, we get
   

F = qλ0

2πε0L
– x – x2

2 – x3

3 – ... – x – x2

2 + x3

3 – ... + 1 + x + x2 + x 3 + ... – 1 – x + x2 – x3 + ...

= qλ0

2πε0L
– 2x – 2x3

3 – ... + 2x + 2x
3 + ... ∼

qλ0

2πε0L
4x3

3 .

In terms of the distance R, the force is
F = (qλ0/2πε0L)(4/3)(L/2R)3 = qλ0L2/12πε0R3.

The field of a dipole on the axis is E = p/2πε0R3, so the dipole moment is   p = λ0L2/6.

72. (a )                                                                                                          (b)

We orient the four charges along the y-axis, as shown in the diagram.  From the symmetry of the
charge distribution, we see that the resultant field will be along the x-axis, and we can double the
difference between the component from the positive charge and that from the negative one. With r the
distance along the x-axis, we have

    
r 
E  = 2(E+x – E–x) ˆ i   = 2(q/4πε0)[cos θ+/[r2 + (3L)2] –  cos θ–/(r2 + L2)] ˆ i 

= (q/2πε0){r/[r2 + (3L)2]3/2 – r/(r2 + L2)3/2}   ̂  i .
If we use the approximation given in the hint, we get

    
r 
E  = (qr/2πε0)[1/r3 – 3(3L)2/2r5 – 1/r3 + 3L2/2r5] ˆ i  = – (6qL2/πε0r4) ˆ i .

–

+

–

+

+

+

–

–

x

y

L

3L

q

q

– q
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CHAPTER  23   Gauss’ Law

Answers to Understanding the Concepts Questions

1.  The value of temperature at each point forms a scalar field. Since there is no directionality associated
with temperature, flux, which measures an abstract sort of flow across a surface, cannot be associated
with a temperature field. However, given a temperature field, one can calculate at each point a vector,
termed the temperature gradient, representing the change in temperature. This vector field has the
components  (∂T/∂x, ∂T/∂y, ∂T/∂z), where you will recall that the symbol ∂ refers to partial
differentiation. Because this field has directionality, it is possible to define a flux for it.

2. The opening is presumably very small in comparison with the size of the sphere. So the “open” sphere
can be thought of as a closed one, only with a small patch removed.

3. According to Gauss’ law, the net charge enclosed by the surface is zero. This does not, however, mean
that the electric field over the surface is always zero. The simplest counter example would be a uniform
field produced by some charge distribution outside the surface. The flux of a uniform field over any
enclosed surface is always zero, yet the field itself is not. Also, the surface can enclose an equal amount
of positive and negative charges, producing a non-zero field but a zero net flux over the surface.

4. Suppose we consider a charge-free region, and there is a break (discontinuity) in a field line. It is then
possible to construct a Gaussian surface that envelops the tip of the break in the field line. There will
be a net flux across that surface, but on the other hand, there is no charge in the region. Thus a break in
an electric field line in a charge-free region violates Gauss' law. The only way to satisfy Gauss' law is
to insist that when a field line ends, it ends on a charge.

5. Consider, for example, a spherical Gaussian surface of radius r centered at the location of a point charge
q. The electric flux through this surface is Φ = EA = E(4πr2). If E = c/r then Φ = (c/r)(4πr2) = 4πcr, which
depends on the radius r of the Gaussian surface, rather than just the charge q  enclosed  –– this is
contradictory to Gauss’ law.

6. If the point charge is located at the center of a certain face (face A) of the cube, then by symmetry the
electric flux through each of the four faces that are perpendicular to face A is identical. However, the
flux through the remaining face that is directly opposite to face A is different. Therefore, in this case
symmetry alone does not provide a simple answer to the flux through each face.

7. The reconciliation follows by considering a pill-box Gaussian surface on the first plate, with its flat
ends, of area A, extending just outside of the plate itself. The charge density is not changed, so that the
Q/ε0  part of Gauss' law is unchanged. The flux through the end surfaces, however, is changed. On the
side of the plate away from the second, negatively charged, plate, the flux through the end of the pill-
box is (σ/2ε0)A from the positive plate, and – (σ/2ε0)A from the negative plate. These cancel. The flux
through the end surface of the pill-box between the plates is (σ/2ε0)A from the positive plate and a
like amount from the negative plate. These add to a total of (σ/ε0)A. There is no conflict.
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8. No. It only means that the net charge enclosed by the surface is zero, since the flux is proportional to
the net charge enclosed. As an example, consider a spherical shell of radius r that is uniformly charged
to a total charge q.  At the center of the sphere is a point charge – q.  If we draw a spherical Gaussian
surface of radius R > r, concentric with the charged shell, then E = 0 everywhere on the gaussian surface
–– and yet there are charged enclosed by it (although no net charge).

9. The electric field produced by a uniformly charged spherical shell is zero anywhere inside the shell.
The force it exerts on a charge there is therefore zero.

10. Gauss' law for fluid flow involves the fluid flux, given by Φ = ∫   
r 
v  ·       d

r 
A . This flux describes the rate a t

which the fluid crosses the surface. For a closed surface there will be a net outflow of fluid only if there
is a source of fluid somewhere within the enclosed volume. Thus Gauss' law will read Φ = S, where S is
the rate at which fluid is “created” inside the surface by a source, in m3/s. If there are sources (faucets)
in the region, then S is positive; if there are sinks (drains) in the region, then S is negative.
Evaporation acts as a sink; that is, a negative contribution to the flux. Looking at the net flux, it is
impossible to separate evaporation from any other type of sink. In the case of electricity, the analog of
evaporation would be the disappearance of electric charge. There are deep principles that argue
against that, and therefore one would not expect S to change with time unless charges actually cross the
boundary of the enclosed surface.

11. Yes. The charges would be deposited over the exterior surface of the aluminum shell, in such a way that
the electric field inside the shell remains zero.

12. Like the Coulomb force, the gravitational force is also a central force with inverse-square dependency
on distance, so Gauss’ law applies to it as well. If we compare the Coulomb force, FE  = (1/4πε0) q1q2/r2,
with the gravitational force, Fg = G m1m2/r2, we find that in writing down Gauss’ law for gravitational
field we need to make the following substitution: q to m, 

r 
E  (=

r 
F E /q) to 

r 
g  (=

r 
F g /m), and 1/4πε0 to G (or

1/ε0 to 4πG). Also, the gravitational flux is negative due to the attractive nature of the force. Thus
ΦΕ = Ç 

r 
E  · d

r 
A  = q/ε0 becomes  Φg = Ç   

r 
g  · d

r 
A  = – 4πGm.

13. Symmetry does allow us to state that the electric field is parallel to the vector normal to the surface of
the torus. Thus Gauss' law gives us a value for the integral ∫E dA. Because of the curvature of the
surface, E is not the same on the inner part of the torus as on the outer part, and therefore the integral
cannot be converted to the form E ∫dA = EA.

14. Assuming that the two point charges are fixed so that they cannot annihilate each other, the resulting
electric field is zero inside the conductor . Outside the conductor,  the field lines extend from the
charges, and always intersect the surface of the conductor perpendicularly.

15. With Gauss' law we can show that there is no charge in the region of uniform electric field. Take a
Gaussian surface in the shape of a can with the two ends perpendicular to the constant field direction.
The net flux through the surface is zero, and so the net charge inside the region is zero. The surface can
be anywhere within the large region, so that there is no net charge anywhere. If you are worried that
this does not rule out equal positive and negative charges inside the region, just make the can smaller.
No matter how small the can’s volume, there is no net charge.

16. The flux also triples. This is because     
r 
E  is now 3   

r 
E  (as it is proportional to the charge that produces it).

17. For a charged line of finite length, the electric field is not uniform over the Gaussian cylinder in
question. For example, the value of the E-field close to one end of the line is not quite the same as that
near the center of the line. Therefore we can no longer evaluate the electric flux as Ç     

r 
E  ·    d

r 
A  = EA.
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18. The flux is proportional to the charge enclosed, so as q doubles the flux also doubles, to  8.0 × 106 N ·
m2/C. Doubling the side length of the cube is irrelevant to the answer, since the flux depends only on
the charge enclosed, not on the size and shape of the Gaussian surface.

19. Let's use Gauss' law together with a Gaussian surface in the form of a tiny pill-box whose flat ends are
perpendicular to the z-axis. Since the z-component of     

r 
E  vanishes and the other components are

independent of z, the net flux through this Gaussian surface is independent of z, and the net charge can
only depend on x and y. Thus the charge density must also be independent of z.

20. Imagine a Gaussian surface that enclosed a certain volume V of the region. The charge enclosed by the
surface is q = ρV. By measuring the electric field on the surface we can find the flux Φ through the
surface. But according to Gauss’ law Φ = q/ε0 = ρV/ε0 , so ρ = ε0 Φ/V.

21. No. If the charge distribution is not uniform then the E-field would not exhibit the symmetry that
allowed us to write Ç     

r 
E  ·    d

r 
A  = EA. The resulting E-field is not the same. Consider, for example, a

highly asymmetrical case where all the charges on the shell is concentrated at one point on the shell.
The resulting electric field is that of a point charge located on the shell, and that is certainly very
different from the result of a uniformly charged shell.
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Solutions to Problems

1. The electric field of the plate is perpendicular to the plate with magnitude E = σ/2ε0.
(a ) Because the circle is parallel to the plate, the area vector is perpendicular to the plate.  The flux

through the circle is
Φ = ∫∫       

r 
E ⋅ d

r 
A =     

r 
E ⋅

r 
A = EπR2 = σπR2/2ε0 .

(b) The angle between the field vector and the area vector is 30°.  The flux through the circle is
Φ = ∫∫       

r 
E ⋅ d

r 
A =     

r 
E ⋅

r 
A = (σπR2/2ε0) cos 30° = 0.866 σπR2/2ε0 .

2. The angle between the field vector and the area vector is 48°.  The flux through the square is
Φ = ∫∫ 

r 
E ⋅ d

r 
A = 

r 
E ⋅

r 
A = EA cos 48° = (1325 N/C)(0.27 m)2 cos 48° = 65 N · m2/C.

3. On the ends of the cylinder the electric field is not constant, but it is always perpendicular to the area
vector of the surface.  On the sides of the cylinder the electric field is constant and parallel to the area
vector.  The flux through the cylinder is

Φ = E · dA = E · dA
end

+ E · dA
end

+ E · dA
side

= 0 + 0 + EA side = λ
2πε0R

2πRh = λh
ε0

.

We see that the result is independent of R, so we get the same flux through a cylinder of radius 2R.

4. The electric field and the area vector are parallel.  Because the electric field varies over the surface,
we find the flux by integrating:

Φ = E · dA
square

= 5xz k · dxdy k
end

= 5z dy
−1

2
x dx

−1

2

= 5z y
1

2 x2

2 –1

2
= 5(3)[2 − ( − 1)] (2)2

2 − ( − 1)2

2

= 68 N·m2/C.

5. Because each side of the cube has an area vector parallel to one of the coordinate axes, the scalar
product for the side involves only one component of the electric field.  The total flux through the cube is

Φ = E · dA = E · dA
x = 0

+ E · dA
x = 1

+ E · dA
y = 0

+ E · dA
y = 1

+ E · dA
z = 0

+ E · dA
z = 1

= 5x dy dz
x = 0

+ 5x dy dz
x = 1

+ − 3y dx dz
y = 0

+ − 3y dx dz
y = 1

+

4z dx dy
z = 0

+ 4z dx dy
z = 1

= 0 + (5)(1)(1)(1) + 0 + ( − 3)(1)(1)(1) + 0 + (4)(1)(1)(1) = + 6 N·m2/C.

6. (a ) The area vector is perpendicular to the plate and thus parallel to the elecric field.  The flux
through the loop is

Φ = ∫∫       
r 
E ⋅ d

r 
A =     

r 
E ⋅

r 
A = EA = (150 N/C)(4 × 10– 4 m2) =6 × 10– 2 N · m2/C.

(b) The angle between the field vector and the area vector is 30°.  The flux through the circle is
Φ = ∫∫       

r 
E ⋅ d

r 
A  =     

r 
E ⋅

r 
A = EA cos 25° = (150N/C)(4× 10– 4 m2) cos 25° = 5.4 × 10– 2 N · m2/C.

(c) The angle between the field vector and the area vector is 330°.  The flux through the circle is
Φ = ∫∫       

r 
E ⋅ d

r 
A  =     

r 
E ⋅

r 
A = EA cos 335° = (150 N/C)(4 × 10– 4 m2) cos 335° = 5.4 × 10– 2 N · m2/C.

There is no change.
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7. The electric field and the area vector are parallel.  Because the electric field varies over the surface,
we find the flux by integrating.  We choose a circular ring of radius r and thickness dr as the
differential element:

Φ = E · dA = E0 1 − r
R 2πr dr

0

R

= 2πE0 r − r2

R dr
0

R

= 2πE0
r2

2 − r3

3R 0

R
=

πE0R2

3 .

8. Because the angle between the electric field and the area varies
over the surface of the hemisphere, we find the flux by integration.
We choose a strip at an angle θ with a thickness R dθ, as shown in
the diagram.  The area of this strip is

dA = (2πR sin θ)R dθ = 2πR2 sin θ dθ.
From the diagram, we see that θ is the angle between 

r 
E  and d

r 
A ,

so we have

Φ = E · dA = E (cos θ) 2πR2 sin θ dθ
0

π/2

= E2πR2 sin2 θ
2 0

π/2
= EπR2.

This is the flux of a constant field through the area of a circle of radius R.

9. Because the angle between the electric field and the area varies
over the surface of the hemisphere, we find the flux by integration.
We choose a band at an elevation z, which corresponds to an angle θ
such that z = R tan θ.  The band has thickness dz = R sec2 θ dθ so the
area of this band is

dA = 2πR dz = 2πR2 sec2 θ dθ.
From the symmetry we see that the flux will be the same for the upper
and lower halves of the surface, so we double the result of the
integration over the top half.  The angle θ ranges from 0 to θ0 , with
sin θ0 = h/R.  From the diagram, we see that θ is the angle betweenr 
E  and d

r 
A  for all elements of the band, so we have

Φ = E · dA = 2 1
4πε0

q

R/cos θ 2 2πR2 sec2 θ (cos θ) dθ
0

θ0

=
q
ε0

cos θ dθ
0

θ 0
=

q
ε0

sin θ
0

θ 0
=

q
ε0

1
1 + R2/h2 .

10. If the charge is placed a very small distance above the center, the radial electric field through the
hemisphere is constant in magnitude and always perpendicular to the surface (

r 
E  and d

r 
A  parallel).

The flux through the hemisphere is
Φhemisphere = ∫∫ 

r 
E ⋅ d

r 
A = EA = (q/4πε0R2)(! 4πR2) = q/2ε0.

The direct calculation of the flux through the planar circle is more difficult; however we can use the
symmetry of the electric field of the point charge.  The flux above the horizontal plane must be equal to
the flux below the horizontal plane:

Φcircle = Φhemisphere.
Thus, the total flux is

Φ = Φhemisphere + Φcircle = (q/2ε0) + (q/2ε0) = q/ε0 .

Rθ

    
r 
E 

      d
r 
A 

R

h

h

x

z

zθ
q

    
r 
E 
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11. Because each side of the parallelepiped has an area vector
parallel to one of the coordinate axes, the scalar product for
each side involves only the component of the electric field in
the direction of the axis.  Because the electric field is a function
of x, y, and z, the magnitude of its components will be different
on opposite sides of the parallelepiped.
For example, along the x-axis, we have

    
r 
E (x + dx, y, z) =     

r 
E (x, y, z) + [∂    

r 
E (x, y, z)/∂x] dx,

or the equivalent three component equations.
The area vector always points out of the surface.  We find the
differential flux through the two sides perpendicular to the
x-axis, with area dy dz, from

Φ1 = 
r 
E ⋅ d

r 
A 

       =  (Ex    ̂  i  + Ey    
ˆ j  + Ez    ̂

 k ) · dy dz (–    ̂  i ) + {(Ex    ̂  i  + Ey    
ˆ j  + Ez   ̂  k ) +

[(∂Ex/∂x) ˆ i  + (∂Ey/∂x) ˆ j  + (∂Ez/∂x) ˆ k ]} · dy dz ˆ i 
       = – Ex dy dz + Ex dy dz + (∂Ex/∂x) dx dy dz = (∂Ex/∂x) dx dy dz.

If we apply a similar analysis to the other pairs of sides, we have
Φ2 = (∂Ey/∂y) dy dx dz   and  Φ3 = (∂Ez/∂z) dz dx dy.

The total flux through the surface is
Φ = Φ1 + Φ2 + Φ3

= (∂Ex/∂x) dx dy dz + (∂Ey/∂y) dy dx dz + (∂Ez/∂z) dz dx dy
= [(∂Ex/∂x) + (∂Ey/∂y) + (∂Ez/∂z)] dx dy dz.

12. The flux is directly dependent on the enclosed charge:
Φ = Q/ε0 ,   or   Q = ε0Φ  = (8.85 × 10–12 C2/N · m2)(– 5.7 × 10-5 N · m2/C) = – 5.0 × 10–16 C.

13. (a ) We use the spherical surface within the charged surface as a Gaussian surface.
Because there is no enclosed charge the total electric flux through the surface is zero.

(b) We use the spherical surface outside the charged surface as a Gaussian surface.
Because all of the charge is enclosed, the total electric flux through the surface is

 Φ = Ç       
r 
E ⋅ d

r 
A  = Q/ε0

= (10– 3 C)/(8.85 × 10–12 C2/N · m2) = 1.13 × 108 N · m2/C.

14. Because all of the charge is enclosed, the total electric flux through the surface is
 Φ = Ç       

r 
E ⋅ d

r 
A = Q/ε0

= (120 × 10– 9 C)/(8.85 × 10–12 C2/N · m2) = 1.36 × 104 N · m2/C.

15. (a ) For the Gaussian sphere we have
Φ = Ç       

r 
E ⋅ d

r 
A  = Qenclosed/ε0 = (– q + 2q – q)/ε0 = 0.

The net electric flux through the surface is zero.
(b) Some electric field lines from the positive charge

to the negative charges will pierce the sphere;
however, every line that comes out through the
sphere at some point will enter the sphere at some
other point.
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16. Because the charge is placed at the midpoint, we know from symmetry that the flux is the same
through the two ends.  From Gauss' law, we have

Φ = Q/ε0 = Φends + Φcurved ;

(1.2 × 104 C)/ε0  =  2(4.5 × 106 N · m2/C) + Φcurved , which gives Φcurved = 4.6 × 106 N · m2/C.

17 . (a ) The total electric flux through the surface depends only on the enclosed charge:
Φ = Ç 

r 
E ⋅ d

r 
A = Q/ε0;

– 4 × 102 N · m2 = Q/(8.85 × 10–12 C2/N · m2), which gives Q = – 3.54 × 10– 9 C.
(b) The total electric flux through the closed surface does not depend on the shape of the surface.

The enclosed charge is Q = – 3.54 × 10– 9 C.
(c) Similar to (b), the enclosed charge is Q = – 3.54 × 10– 9 C.

18. The total electric flux through the surface depends only on the enclosed charge:
 Φ  = Ç       

r 
E ⋅ d

r 
A  = Q/ε0 = (420 × 10– 6 C)/(8.85 × 10–12 C2/N · m2) = 4.7 × 107 N · m2/C.

Because the charge is at the center of the cube, we know from symmetry that each of the six sides has
the same flux through it:

Φside  = (1/6)Φtotal  = (1/6)(4.7 × 107 N · m2/C) = 7.9 × 106 N · m2/C.

19. Because the charge at the origin is at the center of the cube, we know from symmetry that it will
produce a flux out of each side that is 1/6 of the total flux it produces:

Φ1 = (1/6)Φcharge = (1/6)(Q/ε0)

 = (1/6)(5 × 10– 8 C)/(8.85 × 10–12 C2/N · m2) = 9.4 × 102 N · m2/C.
Because the uniform field is parallel to the x-axis, it produces no flux through the sides parallel to the
x-axis.  Through the sides parallel to the yz-plane, the uniform field produces a flux

 Φ2 = EA = (3000 N/C)(0.20 m)2 = 1.2 × 102  N · m2/C.
Because this flux enters the cube from the + x-axis and leaves the cube toward the – x-axis, we have

9.4 × 102  N · m2/C out of the sides parallel to the xy- or yz-planes,
10.6 × 102  N · m2/C out of the side perpendicular to the – x-axis,
8.2 × 102  N · m2/C out of the side perpendicular to the + x-axis.

20. The gravitational field is

g = Fm = —GM
r2
r.

If we compare this to the electric field,

E = 1
4πε0

Q
r2
r,

we see that 
r 
E  →     

r 
g , Q → – M, and ε0 → 1/4πG.  If we make these substitutions in Gauss’ law for the

electric field, we have
Φ = Ç       

r 
E ⋅ d

r 
A = q/ε0 → Φ = Ç    

r 
g ⋅ d

r 
A = – M/(1/4πG) = – 4πGM,

which is Gauss’ law for the gravitational field, where M is the enclosed mass.
To find the gravitational field within a sphere of uniform mass density, we must select a Gaussian
surface.  From symmetry, we know that the field is radial, since all directions must be equivalent.  If we
choose a spherical surface, the field will be constant and parallel to the area vector, so we have

Ç       
r 
g ⋅ d

r 
A = g Ç dA = – 4πGMenclosed;

g4πr2 = – 4πGρ()πr3), which gives g = – )πGρr,  or g =  – GMr/R3 toward the center, r < R .
At a point outside the sphere, we know from symmetry that the field is radial, since all directions must
be equivalent.  Over a spherical surface, the field will be constant and parallel to the area vector, so

Ç       
r 
g ⋅ d

r 
A = g Ç dA = – 4πGMenclosed;

g4πr2 = – 4πGM, which gives  g = – GM/r2 toward the center, r > R .
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21. From symmetry, we know that, outside the charge, the electric
field will be radially away from the axis of the cylinder, with
a magnitude independent of the direction.  For a Gaussian surface
we choose a cylinder of length L and radius r, centered on the axis.
On the ends of this surface, the electric field is not constant
but     

r 
E  and       d

r 
A  are perpendicular, so we have       

r 
E ⋅ d

r 
A = 0.  On the

curved side, the field has a constant magnitude and 
r 
E  and d

r 
A  are

parallel, so we have       
r 
E ⋅ d

r 
A = E dA.  For Gauss’ law, we have

E · dA= E · dA
ends

+ E · dA
side

= 0 + EA side = Q/ε0;

E2πrL = rπR2L/ε0 , which gives
E = ρR2/2ε0r .

Note that the result is independent of L, as it must be.

22. For a Gaussian surface, we choose a cylinder with radius R and
length 2L, with its axis perpendicular to the plate.  Because the
charge density of the plate is uniform, we know that the electric
field must be perpendicular to the plate and may depend only on
the distance from the plate.  By arranging the surface so that
the ends are equidistant from the plate, we know that the flux
through the ends must be the same, while the flux through the
side must be zero.  When we apply Gauss’ law, we have

E · dA = E · dA
ends

+ E · dA
side

= 2EA end + 0 = Q/ε0;

2EπR2 = σπR2/ε0 , which gives
E = σ/2ε0 .

23 . For the long rod we have
Erod = (1/2πε0)λ/r = 2(9 × 109 N · m2/C2)(6.5 × 10– 8 C/m)/(10– 2 m) = 1.17 × 104 N/C.

For the point charge we have
Epoint charge = (1/4πε0)q/r2 = (9 × 109 N · m2/C2)(6.5 × 10– 8 C)/(10– 2 m) = 5.85 × 105 N/C.

The ratio is
Erod/Epoint charge = 0.02 = 2%.

24. From symmetry, we know that the electric field will be radially
away from the axis of the cylinder, with a magnitude
independent of the direction.  For a Gaussian surface we choose a
cylinder of length L and radius r, centered on the axis.  On the
ends of this surface, the electric field is not constant but 

r 
E  and d

r 
A 

are perpendicular, so we have 
r 
E ⋅ d

r 
A = 0.  On the curved side, the

field has a constant magnitude and     
r 
E  and       d

r 
A  are parallel, so we

have       
r 
E ⋅ d

r 
A = E dA.  For Gauss’ law, we have

E · dA = E · dA
ends

+ E · dA
side

= 0 + EA side = Q/ε0;

E2πrL = ρπr2L/ε0 , which gives
E = ρr/2ε0 .

R

L

r

R

L

L

R

L

r
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25. We choose a Gaussian surface with a top surface just above the ground and a bottom surface below the
ground, each of area 40 acres, and the sides perpendicular to the ground.  There is no flux through the
sides, because       

r 
E ⋅ d

r 
A = 0.  There is no flux through the bottom, because   

r 
E  = 0.  When we apply Gauss’ law

to this surface, we get

E · dA = E · dA
top

+ E · dA
side

+ E · dA
bottom

= – EA top + 0 + 0 = Q/ε0 , which gives
  Q = – ε0EA

 = – (8.85 × 10–12 C2/N · m2)(110 N/C)(60 acres)(4 × 103 m2/acre) =  – 2.3 × 10– 4 C.

26. We assume that the smaller cylinder is positive.  From the symmetry of the charge distribution, we
know that the electric field must be radial, away from the axis of the cylinders, with a magnitude
independent of the direction.  For a Gaussian surface we choose a cylinder of length L and radius r,
centered on the axis.  On the ends of this surface, the electric field is not constant but     

r 
E  and       d

r 
A  are

perpendicular, so we have 
r 
E ⋅ d

r 
A = 0.  On the curved side, the field has a constant magnitude and 

r 
E  and

      d
r 
A  are parallel, so we have       

r 
E ⋅ d

r 
A  = E dA.

For the region inside the smaller cylinder,  r < r1 , we apply Gauss’ law:

E · dA = E · dA
ends

+ E · dA
side

= 0 + EA side = Q/ε0;

E2πrL = 0, because q = 0 inside the Gaussian surface, which gives
E = 0 for r < r1 .

For the region between the cylinders,  r1 < r < r2 , we apply Gauss’ law:

E · dA = E · dA
ends

+ E · dA
side

= 0 + EA side = Q/ε0;

E2πrL = λL/ε0 , because only the smaller cylinder is inside the
Gaussian surface, which gives
E = λ/2πε0r radially out for r1 < r < r2 .

For the region outside the larger cylinder,  r2 < r, we apply Gauss’ law:

E · dA = E · dA
ends

+ E · dA
side

= 0 + EA side = Q/ε0;

E2πrL = λL/ε0 , because only the smaller cylinder is inside the
Gaussian surface, which gives
E = 0 for r2 < r .

27. From the symmetry of the charge distribution, we know that the electric field must be radial, away
from the center of the balloon, with a magnitude independent of the direction.  For a Gaussian surface
we choose a sphere centered on the balloon with radius r = 50 cm.  On this surface, the field has a
constant magnitude and 

r 
E  and d

r 
A  are parallel, so we have 

r 
E ⋅ d

r 
A = E dA.  When we apply Gauss’ law,

we get
 Ç 

r 
E ⋅ d

r 
A = E4πr2 = Q/ε0 , which gives

  E  = (1/4πε0)(Q/r2)
= (9 × 109 N · m2/C2)(5 × 10– 7 C)/(0.50 m)2

= 1.8 × 104 N/C;

    
r 
E  = (1.8× 104 N/C) ˆ r .

If the balloon shrinks, the enclosed charge does not change, so the electric field will be the same:

    
r 
E  =     (1.8× 104 N/C) ˆ r .
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28. We assume that the wire is positive.  From the symmetry of the charge distribution, we know that the
electric field must be radial, away from the axis, with a magnitude independent of the direction.  For a
Gaussian surface we choose a cylinder of length L and radius r, centered on the axis.  On the ends of this
surface, the electric field is not constant but   

r 
E  and    d

r 
A  are perpendicular, so we have       

r 
E ⋅ d

r 
A = 0.  On the

curved side, the field has a constant magnitude and     
r 
E  and       d

r 
A  are parallel, so we have       

r 
E ⋅ d

r 
A = E dA.

For the region between the wire and the cylinder,  r1 < r < r2 , we apply Gauss’ law:

E · dA = E · dA
ends

+ E · dA
side

= 0 + EA side = Q/ε0;

E2πrL = λL/ε0, because only the wire is inside the Gaussian surface,
which gives
E  = λ/2πε0r

     = (8.5× 10– 9 C/cm)(102 cm/m)/2π(8.85 × 10–12 C2/N · m2)r =  (1.6 × 104/r) N/C   radially out.
If the radius of the Gaussian surface is reduced to the surface of the wire, λ does not change, so we have

Ewire = (1.6 × 104)/(5.0 × 10–5 m) = 3.1 × 108 N/C.
If the radius of the Gaussian surface increases to the inner surface of the cylinder, λ does not change, so

Ecylinder = (1.6 × 104)/(3 × 10-2 m) = 5.1 × 105 N/C,  much less than that in the wire.

29 . From the symmetry of the charge distribution, we know that the
electric field must be radial, away from the axis of the cylinder,
with a magnitude independent of the direction.  For a Gaussian
surface we choose a cylinder of length L and radius r, centered on
the axis.  On the ends of this surface, the electric field is not
constant but 

r 
E  and d

r 
A  are perpendicular, so we have 

r 
E ⋅ d

r 
A = 0.

On the curved side, the field has a constant magnitude andr 
E  and d

r 
A  are parallel, so we have 

r 
E ⋅ d

r 
A  = E dA. For the region

where r < r1 , we apply Gauss’ law:

E · dA = E · dA
ends

+ E · dA
side

= 0 + EA side = Q/ε0;

E2πrL = 0, because there is no charge inside the Gaussian surface,
which gives
E = 0 for r < r1 .

For the region where r1 < r < r2 , we apply Gauss’ law:

E · dA = E · dA
ends

+ E · dA
side

= 0 + EA side = Q/ε0;

E2πrL = ρ πr2 − πr1
2 L/ε0 , which gives

    
r 
E  = [ρ(r2 − r1

2 )/ 2ε0r]ˆ r    for  r1 < r < r2 .
For the region where r2 < r, we apply Gauss’ law:

E · dA = E · dA
ends

+ E · dA
side

= 0 + EA side = Q/ε0;

E2πrL = ρ πr2
2 − πr1

2 L/ε0 , which gives

    
r 
E  =     [ρ(r2

2 − r1
2 )/2ε0r]ˆ r    for  r2 < r .

30. The electric field just outside a charged surface is
 E = σ/ε0 , where σ is the charge per unit area.

Because the charge density is uniform, for the total charge we have
  q  = σA = ε0E(2πRh + 2πR2) = ε0E2πR(h + R)

= (8.85 × 10–12 C2/N · m2)(2.0 × 106 N/C)2π(0.40 × 10– 2 m)[(7.0 cm + 0.40 cm)(10– 2 m/cm)]
= 3.3 × 10– 8 C.

L

r
r2

r1
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31. From the symmetry of the charge distribution, we know that the
electric field must be radial, with a magnitude independent of the
direction.  For a Gaussian surface we choose a sphere of radius r.
On this surface, the field has a constant magnitude and   

r 
E  and    d

r 
A 

are parallel, so we have       
r 
E ⋅ d

r 
A = E dA.  The charge density is

ρ = Q/[)π(R2
3 – R1

3)].
For the region where r < R1 , we apply Gauss’ law:

Ç 
r 
E ⋅ d

r 
A = EA = Q/ε0;

E4πr2 = 0, because there is no charge inside the Gaussian surface,
which gives

E = 0   for r < R1 .
For the region where R1 < r < R2 , we apply Gauss’ law:

Ç       
r 
E ⋅ d

r 
A = EA = Q/ε0;

E4πr2 = ρ)π(r3 – R1
3)/ε0 ,  which gives

E = ρ)π(r3 – R1
3)/(4πε0r2) =  Q(r3 – R1

3)/4πε0(R2
3 – R1

3)r2;

     
r 
E  =     [Q(r 3 − R1

3)/ 4πε0 (R2
3 − R1

3 )r 2 ]ˆ r    for  R1 <r <R2 .
For the region where R2 < r, we apply Gauss’ law:

Ç 
r 
E ⋅ d

r 
A = EA = Q/ε0;

E4πr2 = Q/ε0 ,  which gives
E = (Q/4πε0r2) ;
r 
E  = (Q/4πε0r 2) ˆ r    for  R2 < r .

32. (a) From Gauss’ law Φ  = Ç 
r 
E ⋅ d

r 
A  = EA = E (4πr2) = Q/ε0 , so the electric field a distance r from the

center of the shell is
E = Q/4πε0r2,

where Q is the net charge enclosed in the spherical region of radius r. If we choose r to be just
slightly greater than R, so that the Gaussian surface is inside the metal shell, then E = 0, and hence
Q = 0. But Q is the sum of  q and the charge q’ on the inner surface of the shell; i.e.,

Q = q + q’ = 0. Thus  q’ = – q  on the inner surface of the shell.
(b) Since the shell as a whole is charge-neutral, the charge on its outer surface must be + q .
(c)   For r < d < R the charge enclosed by the Gaussian surface is Q = q, so

E = q/4πε0r2 , radially outward if q > 0 and inward if q < 0.

33. (a) The electric field due to a single infinite plane of charge density σ  is σ/2ε0, as we learned from the
textbook. If we set up an x-axis pointing perpendicularly from the first sheet (with charge density
σ1) to the second sheet (with charge density σ2), where the first sheet is located at x = 0 and the
second one at x = a, then by superposition

r 
E  =      −(σ1 /2ε0 + σ2 /2ε0 )ˆ i         (x < 0) ,
r 
E  =      (σ1 /2ε 0 − σ2 /2ε0 )ˆ i         (0 < x < a) ,

    
r 
E  =      (σ1 /2ε 0 + σ2 /2ε0 )ˆ i         (x > a) .

         (b) Since the metal plate is uncharged, when placed in between the two charged plates the densities of
the induced charges on both of its surfaces must have the same magnitude and opposite signs. The
net electric field due to this pair of surfaces is zero outside the metal, so     

r 
E  remains the same as part

(a) above, except for the interior of the metal, where the field of the induced charge is not zero and
cancels with that of the two charged plates, resulting in a zero net field.

r

R1

R2



Chapter 23:  Gauss’ Law

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 23-12

34. The positive sheet produces an electric field directed away from the sheet with a magnitude
E+ = σ+/2ε0 = (5 × 10– 6 C/m2)/2(8.85 × 10–12 C2/N · m2) = 2.8 × 105 N/C.

The negative sheet produces an electric field directed toward the sheet with a magnitude
E– = σ–/2ε0 = (3 × 10– 6 C/m2)/2(8.85 × 10–12 C2/N · m2) = 1.7 × 105 N/C.

Between the sheets, the two fields are in the same direction, so we have
Ebetween = E+ + E– = 2.8 × 105 N/C + 1.7 × 105 N/C

= 4.5 × 105 N/C toward the negative sheet .
Outside the sheets, the two fields are in opposite directions, so we have

Eoutside  = E+ – E– = 2.8 × 105 N/C – 1.7 × 105 N/C = 1.1 × 105 N/C away from the sheets.

35. The positive sheet produces an electric field directed away
from the sheet with a magnitude

E+ = σ+/2ε0

= (5 × 10– 6 C/m2)/2(8.85 × 10–12 C2/N · m2) = 2.8 × 105 N/C.
The negative sheet produces an electric field directed toward
the sheet with a magnitude

E–  = σ–/2ε0 
= (3 × 10– 6 C/m2)/2(8.85 × 10–12 C2/N · m2) = 1.7 × 105 N/C.

If we consider the 1st quadrant, because the fields are perpendicular,
we have

  E  = (E+
2 + E–

2)1/2

 = [(2.8 × 105 N/C)2 + (1.7 × 105 N/C)2]1/2 = 3.3 × 105 N/C,     and
tan θ = E–/E+ = (1.7 × 105 N/C)/(2.8 × 105 N/C) = 0.61, which gives θ = 31°.

From the diagram, we see that the fields in the other quadrants are mirror images of the field in the
1st quadrant:

1st quadrant: E at – θ ;    2nd quadrant: E at 180° + θ ;
3rd quadrant: E at 180° – θ ;    4th quadrant: E at θ .

36. Because the slab is infinite, we know from symmetry that the field
must be perpendicular to the slab, with a constant magnitude for a
constant distance from the slab.  If r is positive, the field will be
away from the slab.  For a Gaussian surface we choose a cylinder of
length 2L and area A, centered on the axis.  On the curved side of
this surface, the electric field is not constant but 

r 
E  and d

r 
A  are

perpen-dicular, so       
r 
E ⋅ d

r 
A = 0.  On the ends, the field has a constant

magnitude and     
r 
E  and       d

r 
A  are parallel,so       

r 
E ⋅ d

r 
A = E dA.

To find the field outside the slab, we use the fact that the field will be away from the slab.  If we place
our Gaussian cylinder so that one end is at z = L and the other end is at z = – L, the fields at each end
will be directed out of the surface and have the same magnitude.  When we apply Gauss’ law, we have

E · dA = E · dA
top

+ E · dA
bottom

+ E · dA
side

= EA + EA + 0 = Q/ε0; which gives
E = ρt/2ε0 away from the slab, where z > t/2  or  z < – t/2. The field is uniform outside the slab.

To find the field inside the slab, we use the same Gaussian surface, with the ends of the cylinder at ± z,
z < t/2.  The enclosed charge is only that part of the slab inside the cylinder. Apply Gauss’ law:

E · dA = E · dA
top

+ E · dA
bottom

+ E · dA
side

= EA + EA + 0 = Q/ε0; which gives

    
r 
E  =     (ρz/ ε0 )ˆ k     where  − t/2 < z < t/ 2 .

A

L

L

x

z

t

θ

+

+

+

+

+

+

+

+

– – – – – – –

θ θ

θ

    
r 
E +     

r 
E +

    E +    
r 
E +

    
r 
E −

    
r 
E −     

r 
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r 
E −



Fishbane, Gasiorowicz, and Thornton

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 23-13

37. From the symmetry of the charge distribution, we know that
the electric field must be radial, with a magnitude independent
of the direction.  For a Gaussian surface we choose a sphere of
radius r.   On this surface, the field has a constant magnitude and

    
r 
E  and       d

r 
A  are parallel, so we have    

r 
E ⋅ d

r 
A = E dA.  The inner

charge density is
  ρ1 = Q1/()πR1

3) = 3Q1/4πR1
3

 = 3(– 2 × 10– 6 C)/4π(0.03 m)3 = – 1.77 × 10– 2 C/m3.
The outer surface charge density is

  σ2 = Q2/4πR2
2 = (5 × 10– 6 C)/4π(0.08 m)2 = 6.2 × 10– 5 C/m2.

For the region where r < R1 , we apply Gauss’ law:

Ç       
r 
E ⋅ d

r 
A = EA = Q/ε0;  E4πr2 = ρ1()πr3)/ε0 ,  which gives

E = ρ1r/3ε0  = [(– 1.77 × 10– 2 C/m3)/3(8.85 × 10–12 C2/N · m2)]r =  (– 6.7 × 108 )r  N/C with r in m;

    
r 
E  =       (−6.7 × 108  

r 
r )N/C  with r in m , where r < 3 cm.

For the region where R1 < r < R2 , we apply Gauss’ law:

Ç 
r 
E ⋅ d

r 
A = EA = Q/ε0;  E4πr2 = Q1/ε0 ,  which gives

E = (1/4πε0)Q1/r2 = (9 × 109 N · m2/C2)(– 2 × 10– 6 C)/r2 = (– 1.8 × 104)/r2 N/C  with r in m;

    
r 
E  =  [(−1.8× 104/r 2 ) ˆ r ] N/C  with r in m , where 3 cm < r < 8 cm.

For the region where R2 < r, we apply Gauss’ law:

Ç 
r 
E ⋅ d

r 
A = EA = Q/ε0;   E4πr2 = (Q1 + Q2)/ε0 ,  which gives

E = (Q1 + Q2)/4πε0r2 = (9 × 109 N · m2/C2)[(– 2 × 10– 6 C) + (5 × 10– 6 C)]/r2) N/C
    =  (2.7 × 104)/r2 N/C  with r in m;

 
r 
E  = [(2.7 × 104/r 2 ) ˆ r ] N/C  with r in m , where 8 cm < r.

38. The charge within the sphere with r = a is  Q1 = ρ0()πa3) = )πa3ρ0.
We find the charge within the spherical shell from r = a to r = R by choosing a spherical shell of radius
r and thickness dr, and integrating:

   
Q2 = ρ4πr2 dr

a

R

= ρ0
r – R
a – R

4πr2 dr
a

R

= 4πρ0

a – R
r – R r2 dr

a

R

= 4πρ 0

a – R
1
4 R

4 – a4 – R
3 R

3 – a3 = πρ 0

3
4Ra3 – 3a4 – R4

a – R
.

The flux through each of the spherical surfaces depends only on the enclosed charge, so we have
Φr = a  = Qenclosed/ε0 = Q1/ε0 = )πa3ρ0/ε0 .
Φr = R = Qenclosed/ε0 = (Q1 + Q2)/ε0

      = (4πa3ρ0/3ε0) + (πρ0/3ε0)[(4Ra3 – 3a4 – R4)/(a – R)]
      = (πρ0/3ε0)[(4a4 – 4a3R + 4Ra3 – 3a4 – R4)/(a – R)]
      = (πρ0/3ε0)[(a4 – R4)/(a – R)] =  (πρ0/3ε0)(a 2 + R2)(a + R) .

Φr = 10R = Qenclosed/ε0 = (Q1 + Q2)/ε0 = Φr = R  =  (πρ0/3ε0)(a 2 + R2)(a + R) .
From the symmetry of the charge distribution, we know that the electric field must be radial, with a
magnitude independent of the direction.  On each of the spheres, the field has a constant magnitude
and     

r 
E  and       d

r 
A  are parallel, so we have

Φ = Ç       
r 
E ⋅ d

r 
A = EA,   or   E = Φ/A.

Er = a = Φr = a/4πa2 = ρ0a/3ε0 radial .

Er = R = Φr = R/4πR2 = (ρ0/12ε0R2)(a 2 + R2)(a + R) radial .

Er = 10R = Φr = 10R/4π(10R)2 = (ρ0/1200ε0R2)(a 2 + R2)(a + R) radial .

r

Q1

Q2

R1

R2
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39. If we apply the solution for Problem 38 to the general point r, we have
Charge density Flux Electric field

r < a: ρ0 (4πρ0/3ε0)r3 (ρ0/3ε0)r
 a < r < R: ρ0(r – R)/(a – R)  (πρ0/3ε0)(a 4 – 4ar3 – 3r4)/(a – r) (ρ0/12ε0)(a 4 – 4ar3 – 3r4)/(a – r)r2

R < r: 0 (πρ0/3ε0)(a 2 + R2)(a + R) (ρ0/12ε0)(a 2 + R2)(a + R)/r2

          
r

a R aa R R
rr

ρ Φ E

40. Each plate produces a downward uniform electric field, so the electric field between the plates is
E = (σ+ + σ–)/2ε0 = [(6.5 + 4.8) × 10– 6 C/m2]/2 (8.85 × 10–12 C2/N · m2)

    = 6.4 × 105 N/C   away from the positive plate.

41 . In the region where r < R, we are inside both spherical shells, so we must have
r < R:     

r 
E  = 0.

In the region where R < r < 2R, we are outside the inner shell, so it looks like a point charge; we are
inside the outer shell, so it contributes no field:

R < r < 2R: 
r 
E  = (q/ 4πε0r 2 ) ˆ r .

In the region where 2R < r, we are outside both shells, so each one looks like a point charge, or a net
charge of – q:

2R < r :     
r 
E  =     −(q/ 4πε0r 2 ) ˆ r .

42. The electric field between the plates is
E = σ/ε0 , so the charge on each plate is
Q = σA = ε0AE

     = (8.85 × 10–12 C2/N · m2)(0.1 m)2(3 × 106 N/C) = 2.7 × 10– 7 C.

43. For a conducting spherical surface, the radial electric field just outside the surface is
E = σ/ε0 , so we have

σmax = ε0Emax = (8.85 × 10–12 C2/N · m2)(3 × 106 N/C) = 2.7 × 10– 5 C/m2 .

44. The flux through a Gaussian surface depends on the enclosed charge.
For the surface at a radius of 50 cm, we have

Φ2 = (Qsphere + Qshell)/ε0.
For the surface at a radius of 30 cm, we have

Φ1 = Qsphere/ε0.
For the ratio we have

Φ2/Φ1 = (Qsphere + Qshell)/Qsphere = 1 + Qshell/Qsphere;
(1.6 × 10– 7 N · m2/C)/(0.8 × 10– 7 N · m2/C) = 1 + Qshell/Qsphere ,  which gives Qsphere/Qshell = 1.

45. For the ratio of charge densities, we have
σsphere/σshell = (Qsphere/Qshell)(Rshell/Rsphere)2 = (1)(35 cm/25 cm)2 = 1.96.
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46.

47. From Gauss’ law, we know that the flux through a Gaussian surface depends on the enclosed charge:
Φ = Qenclosed/ε0.

For the region where a < r < b, we have Φ1 = Q/ε0 , so the enclosed charge is Q.  This must be the total
charge on the inner sphere.  Because the sphere is conducting, the charge is located uniformly on the
surface, with the charge density

σinner sphere = Q/4πa2 .
For the region within the shell, b < r < R, the electric flux is 0, so the net enclosed charge is 0.  Because
there is a charge Q on the inner sphere, there must be a charge – Q on the inner surface of the shell.
Because the shell is conducting, the charge is located uniformly on the surface, with the charge density

σshell, inside  = – Q/4πb2 .
For the region outside the shell, R < r, we have Φ2 = 2Q/ε0 , so the net enclosed charge is 2Q.  Because
there is a charge Q on the inner sphere, there must be a charge Q on the shell.  Because there is a charge
– Q on the inner surface, there must be a charge + 2Q on the outer surface, located uniformly on the
surface, with the charge density

σshell, outside  = + 2Q/4πR2
  = + Q/2πR2 .

48. If we choose a Gaussian surface around the earth, we have
Ç       

r 
E ⋅ d

r 
A = – EA = Q/ε0, so we have

Q = – ε04πR2E

     = –  [1/(9 × 109 N · m2/C2)](6.37 × 106 m)2(100 N/C) =  – 4.5 × 105 C, on the surface.
The surface charge density is

σ = Q/A = ε0E = (8.85 × 10–12 C2/N · m2)(– 100 N/C) =  – 8.9 × 10–10 C/m2 .

49.

         

q
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50.

             

+ + + ++ +
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51. We find the flux through a side from
Φ = ∫∫ 

r 
E ⋅ d

r 
A .

For the sides perpendicular to the  x-axis, we have
Φx = 0 = ∫∫ 

r 
E ⋅ d

r 
A = ∫∫ (bx2    ̂  i ) · (– dA   ̂  i ) = – b(0)2a 2 = 0;

Φx = a = ∫∫       
r 
E ⋅ d

r 
A = ∫∫ (bx2 ˆ i ) · (+ dA ˆ i ) = b(a)2a 2 = ba 4 .

For the sides parallel to the x-axis, we have
Φy = 0 = ∫∫ 

r 
E ⋅ d

r 
A = ∫∫ (bx2 ˆ i ) · (– dA ˆ j ) = 0;

Φy = a = ∫∫       
r 
E ⋅ d

r 
A = ∫∫ (bx2   ̂  i ) · (+ dA   

ˆ j ) = 0;

Φz = 0 = ∫∫       
r 
E ⋅ d

r 
A = ∫∫ (bx2 ˆ i ) · (– dA ˆ k ) = 0;

Φz = a = ∫∫ 
r 
E ⋅ d

r 
A = ∫∫ (bx2    ̂  i ) · (+ dA    ̂  k ) = 0.

We use Gauss’ law to find the enclosed charge:
Φ = Ç       

r 
E ⋅ d

r 
A = q/ε0;

b a4 = q/ε0 , which gives q = ε0b a4 .

52. From Example 23–7, we know that the electric field inside the sphere is
E = (Q/4πε0)(r/R3) radial.

Because the charges have opposite signs, the force on the point charge is toward the center of the
sphere, with magnitude

F = qQr/4πε0R3,
and is a restoring force proportional to the displacement from the center, as in simple harmonic motion,
with an effective force constant of

k = qQ/4πε0R3.
The resulting motion, with r = R at t = 0, is

r = R cos(ωt) ,      with ω = (k/m)1/2;  the motion is simple harmonic.
The period of the motion is

τ = 2π/ω = 2π(m/k)1/2 = 2π(4πε0mR3/qQ)1/2 .
The total energy is the initial potential energy:

E = U = !kR2 = !(qQ/4πε0 R
3)R2 = qQ/8πε0R .

z

x

y

a

a

a
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53. (a) Since no charge is present in the region enclosed by the cap and the flat surface, any electric field
lines passing through the flat surface will also pass through the cap. So the electric flux through
the flat surface is the same as that through the cap. Since the area of the cap is 0.067, or 6.7%, of
that of the sphere, the flux Φ through the cap is also 6.7% of Φ0, the flux  through the entire
sphere:

Φ = 0.067 Φ0 =  0.067(Q/ε0) ,
where we noted that Φ0 =  Q/ε0 , due to Gauss’ Law.

 (b) Any point on the boundary of the flat surface is also on the Gaussian sphere, so it is a distance R
from the charge Q. The magnitude of the electric field there is therefore

E = Q/4πε0R2 .

54. (a) The total charge Q on the sphere satisfies Gauss’ law:
Φ = Q/ε0 ;  or
Q = Φε0 = (17.1 N · m2/C2)(8.85 × 10–12 C2/N · m2)

     = 1.51 × 10–10 C.
 (b) The electric flux through the upper hemisphere is greater than that through the lower

hemisphere, so the charge distribution is non-uniform.
(c) The sphere is made of insulating material . Otherwise, since it is uniform the charge distribution

should also be uniform (as the charges are free to move on the surface of a conductor), and the fluxes
through the two hemispheres would be identical.

55. We find the flux through the surface from
Φ = ∫∫ 

r 
E ⋅ d

r 
A .

Because 
r 
E  and d

r 
A  are constant vectors, we have

  Φ =     
r 
E ⋅

r 
A = EA cos θ

= E(L)(L/cos θ)( cos θ) = EL2(cos θ/cos θ) = EL2.
We choose a Gaussian surface by using the sides of the tube and ends at two different angles.  Because
there is no charge enclosed, the net flux through the surface is 0.  There is no flux through the sides of
the tube, so the flux that enters one end must be the same as that which exits the other end, and thus
independent of angle.

56. (a ) The point r = 0.50 m is outside the inner sphere, so it is equivalent to a point charge.  The point
is inside the outer sphere, so it makes no contribution to the electric field.  The total field is

Ea = (Qinner/4πε0ra
2) + 0 = σinner4πrinner

2/4πε0ra
2 = σinnerrinner

2/ε0ra
2

= (16 × 10– 6 C/m2)(0.25 m)2/(8.85 × 10–12 C2/N · m2)(0.50 m)2

         = 4.5 × 105 N/C   radial .
(b) The point r = 0.70 m is outside the inner sphere, so it is equivalent to a point charge.  The point

is inside the outer sphere, so it makes no contribution to the electric field.  The total field is
Eb = (Qinner/4πε0rb

2) + 0 = σinner4πrinner
2/4πε0ra

2 = σinnerrinner
2/ε0ra

2

= (16 × 10– 6 C/m2)(0.25 m)2/(8.85 × 10–12 C2/N · m2)(0.70 m)2

= 2.3 × 105 N/C   radial .
(c) Because the outer shell does not contribute to the electric field inside, there will be  no change.
(d) The point r = 1.0 m is outside both spheres, so each is equivalent to a point charge.

The total field is
   Ed  = (Q1 + Q2)/4πε0 rd

2 = (σinner4πrinner
2 + σouter4πrouter

2)/4πε0rd
2

   = [(σinnerrinner
2) + (σouterrouter

2)]/ε0rd
2 

   = [(16 × 10– 6 C/m2)(0.25 m)2 + (8 × 10– 6 C/m2)(0.75 m)2]/[(8.85 × 10–12 C2/N · m2)(1.5 m)2]
   = 2.8 × 105 N/C   radial .
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57. Because there is no charge enclosed by the tetrahedron, the net flux through all sides is 0:
Φnet = Φupper sides + Φbottom.

Thus we find the flux through the three upper sides from
  Φupper sides  = – Φbottom = – (E ˆ k ) · A(– ˆ k )  = + E(!L)(L sin 60°) = 0.433EL2 .

58. If we choose a sphere of radius r < R as a Gaussian surface, we have
Ç       

r 
E ⋅ d

r 
A = E4πr2 = Qenclosed/ε0 ,    or   Qenclosed = ε0E4πr2.

We set up the integral to find the enclosed charge by using a spherical shell of radius r ′ and thickness
dr ′ for the differential element.  We also write the right-hand side as an integral:

   ρ4πr′2 dr ′
0

r

= ε0E4π2 r′ dr ′
0

r

.

Comparing the two integrands, we see that   ρ ∝ 1/r .
As r → 0 at the center, ρ → ∞, because the volume of a sphere approaches 0 faster than the area does.

59 . From the symmetry of the field we construct a Gaussian surface which
is a cylinder of length L  and radius a with its axis along the axis of
the field.  Because the field is parallel to the ends of the cylinder, we
have

Ç       
r 
E ⋅ d

r 
A = E2πaL  = Qenclosed/ε0 .

If there is a charge distribution ρ(r) within the cylinder, we have
   

Qenclosed = 2πrLρ(r) dr
0

a

. Thus

ε0E2πaL = 2πrLρ(r) dr
0

a

, or ε0Ea = rρ( r) dr
0

a

.

We can write the left-hand side as an integral to get
   ε0E dr

0

a

= rρ(r) dr
0

a

.

Comparing the two integrands, we see that 
ρ(r) = ε0E/r .

Note that this function diverges when r → 0.  The required field can be set up only beginning at some
distance r0 from the axis.  Within r0 only the total charge has to correspond to the required field:

q/L = ε0E2πr0 , which is finite.

60. (a ) For a Gaussian surface within the cylinder just outside the
spherical cavity, we have
Ç       

r 
E ⋅ d

r 
A = Qenclosed/ε0.

Because the field must be 0 inside a conductor, the enclosed
charge must be zero.  With a charge + 0.12 mC at the center,
there must be a charge of   – 0.12 mC   on the surface of the cavity.

(b) There can be no free static charge inside the conductor. If – 0.12 mC
of the total charge of – 0.55 mC on the cylinder resides on  the inner
surface, the remaining  – 0.43 mC   must be on the outside surface.

a

L

    
r 
E 

    
r 
E 

+q

Q
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61. We can express the linear electric field as   
r 
E (x) = bx   ̂  i .  At x = 0.5 m, we have

    
r 
E (0.5 m) = (3000 N/C)   ̂  i  = b(0.5 m)   ̂  i , which gives b = 6000 N/C · m.

We call the area of the surface oriented in the yz-plane A.  We choose a Gaussian surface consisting of
the boundary of the region parallel to the x-axis and ends of area A at x = 0 and x = x.  Because there is
no flux through the sides and the field is constant at each end, we have

Φ = Ç       
r 
E ⋅ d

r 
A = Qenclosed/ε0;

E(x)    ̂  i  · A    ̂  i  + E(0)    ̂  i · A(–    ̂  i ) = (1/ε0) ∫ ρA dx, which gives
∫ ρ dx = ε0(bx) = + bε0x.

Comparing the two sides, we see that
ρ = + bε0 =  + 6000ε0 C/m3 (constant) .

Note that for the field to be 0 at x = 0, there must be external charges at x < 0.

62. From symmetry, we know that the field inside a uniformly
charged sphere must be radial and depends only on the distance
from the center.  We choose a spherical surface with r < R for a
Gaussian surface.  Because   

r 
E  and    d

r 
A  are parallel, we have

Ç 
r 
E ⋅ d

r 
A = Qenclosed/ε0;

E(4πr2) = ρ()πr3)/ε0 , which gives E = ρr/3ε0 radial,  or

    
r 
E  = (ρ/3ε0)    

r 
r .

We create the cavity by adding to the original sphere, with
density ρ,
a sphere with density – ρ and radius b, centered at 

r 
a .  Within the

cavity, we are inside both spheres, so their fields arer 
E + = (ρ/3ε0)    

r 
r     and   

r 
E – =  (– ρ/3ε0)    

r 
r ′,

where 
r 
r ′ is the radius vector for the cavity.

From the diagram, we have 
r 
r  = 

r 
a  + 

r 
r ′, so the total field isr 

E  = 
r 
E + + 

r 
E – = (ρ/3ε0)    

r 
r  + (– ρ/3ε0)    

r 
r ′ = (ρ    

r 
r /3ε0) – [ρ(   

r 
r  –     

r 
a )/3ε0];

    
r 
E  =        (ρ/3ε0 ) 

r 
a .

Note that the field inside the cavity is uniform.

63. We assume that the positive test charge is at a stable equilibrium point.  The electric field there from
the other charges is 0.  A short distance from the stable equilibrium point, the electric field must be
directed toward the point.  We choose a small Gaussian surface around the equilibrium point:

Ç       
r 
E ⋅ d

r 
A = Qenclosed/ε0.

Because the field is directed into the surface, we have
Ç 

r 
E ⋅ d

r 
A  < 0,     which means that there is a negative charge at the equilibrium point.  This is a

contradiction, because the only charge there is the positive test charge.  Thus the test charge cannot be
in stable equilibrium.

b

    
r 
r 

      
r 
r '

    
r 
a     

r 
E −

    
r 
E +
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CHAPTER  24   Electric Potential

Answers to Understanding the Concepts Questions

1. The volt is defined so that 1 N/C = 1 V · m. Cross-multiplying yields 1 V · C = I N · m = 1 J.

2. The electric field due to the charged plane is E = σ/2ε0. If we put a negative test charge q next to the
plane then it will experience an electric force of F = qE = qσ/2ε0. Measure F (say, by means of finding the
resulting acceleration of the charge toward the plane) and we can obtain the value of σ.

3. If charge is placed inside the hollow space in a spherical metal shell, there will be an electric field.
The field lines will join the charges to the inner surface of the shell where induced charges appear so as
to yield a net charge inside any surface entirely within the spherical shell. To make a constant field in
a small region, insert a small uniformly charged plane within the space; near that plane the field is
constant.

4. The reason why the electric field near the surface of Earth points downward is because Earth is
negativelky charged. The metal rod, when in contact with the ground,  would also be negatively
charged as it forms part of an equipotential body with Earth. Since electric charges tend to congregate
in sharp corners, we can expect a higher surface charge density near the end of the rod that is exposed to
the air, and the electric field just outside that end is expected to be greater than the ambient value of
100 V/m.

5. The question is analogous to asking for the source of the energy which moves a test mass in a
gravitational field that arises from a distribution of masses. The test charge –– like the test mass ––
has potential energy by virtue of being in the field of the existing charge distribution (mass
distribution) and some of this potential energy is converted to kinetic energy in giving the test charge
(test mass) some motion. The source of the potential energy is the work that had to be done to assemble
the charge distribution (mass distribution) by bringing in the constituent charges (constituent masses)
from infinity.

6. If the kinetic energy of the charge changes, then the work done on the unit test charge would no longer
be equal to the change in electric potential. For example, if the kinetic energy of the charge increases by
1 J, then in addition to changing the potential energy of the test charge, which requires a certain
amount of work, one must also expend an additional 1 J of work on the charge to cause the increase in its
kinetic energy.

7. The net electric force due to the dipole on a point charge is the difference between the force exerted by
the positive charge and that exerted by the negative charge.  This difference is greater at θ = 0 or π, so
the net force due to the dipole is greater at θ  = 0 or π than at π/2.

8. No. They are at the same (high) potential as the Van de Graaff generator itself and are insulated from
the ground.  In fact if they were grounded  (say, by having their bare feet touch the ground) then there
would be a potential difference between their hands, which are touching the generator, and their feet,
which are grounded. Such potential difference could be dangerous, as it would drive a current  through
the body.
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9. The surface of a conductor will always be an equipotential in equilibrium. If a charge is placed on an
electric surface, there is a short time during which it is localized. After that short time interval it
distributes itself over the surface so that there is no force on any part of the charge, and equilibrium is
achieved. The mention of a "short time" indicates that the statement that a conductor forms an
equipotential is specifically true for static fields. The question then becomes more a matter of finding
the time scale that distinguishes static from nonstatic fields.

10. According to Eq. (24-29), the electric field equals to the negative value of the gradient of the potential
function. If we add a constant term to the potential to shift the location of zero potential to any fixed
point
(x0, y0, z0), i.e., change V(x, y, z) to V(x, y, z) – V(x0, y0, z0), whereupon V = 0 at (x0, y0, z0), we will not be
changing the value of     

r 
E (x, y, z). This is because the gradient of the additional constant term is zero:

∂V(x0, y0, z0)/∂x =  ∂V(x0, y0, z0)/∂y =  ∂V(x0, y0, z0)/∂z = 0.

11. The point of the demonstration is to place charge on the person. Once that happens, the individual
hairs share the charge and repel each other much like the leaves of an electroscope. If the person is not
on an insulated mat, then the charge from the generator will flow through the person as current, with
potentially painful or even fatal results.

12. The zero potential can be defined at any point where the charge density is finite. Even if Earth is
negatively charged we can still define its potential as zero. Remember, it’s the potential difference
that’s physically relevant, not the potential itself.

13. Knowledge of the potential at a point does not allow us to determine the electric field. The simplest
way to see this is to observe that potential energy contains an arbitrary constant. In contrast, if we know
the potential at two adjacent points, then we know a potential difference, and this has physical
meaning. In fact, the difference in the potential can allow us to find the electric field in the direction of
the vector that connects the two adjacent points, as can be seen from Eq. (24-9); the points b and a are
taken near each other.

14. The field lines seem to be denser near the sharp edges of the conductors (i.e., the two ends of the rod and
the tip of the tear-drop shaped conductor). This is of course expected; see the discussion next to the
figure in the textbook.

15. Yes. What matters is the final configuration of the charged systems, not how it was assembled. This is
clear from Eq. (24.18).

16. The electric fields are very large at sharp comers of any charged object, and with large fields
breakdown becomes much more likely. Smooth spherical surfaces minimize this possibility by
minimizing the presence of points.

17. The net work done by an electrostatic force is always zero as we move a test charge along any enclosed
path. By definition, then, the electrostatic force is conservative.

18. Nothing of physical significance would change, since potential energy, and thus electric potential, are
not specified to within an additive constant.

19. Yes. For example, consider a pair of charges, + q and – q, separated from each other by a distance 2r.  If
we take V = 0 at infinity, then the potential at the midpoint of the line connecting the two charges is V
= kq/r  + (–kq/r) = 0.
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20. The potential at a fixed point tells us nothing about the electric field because it is only differences in
potentials that give us information about the electric field. (See the discussion of question 13.) If,
however, we know the value of the potential in the vicinity of the points where it is zero, we can do
better.

21. Yes. For example, take two concentric spherical shells of radii r1 and r2, respectively, and charge them
uniformly such that q1/q2 = – r1/ r2.  Then the potential everywhere inside the smaller sphere is V =
k q1/ r1  + kq2/ r2 = 0.

22. If we interpret “the easiest way” as the steepest path, then we want to look for a direction in which
the lines of constant elevation are the closest from each other. In Fig. 24-10, this is roughly in the
“south-east” direction. If you move perpendicularly to the contour s then your elevation drops the
fastest. This is what happens to a ball if you let it roll off the top of the peak from rest. (And if you
follow a certain contour then your elevation does not change, of course.) If we think of this plot as an
equipotential plot for a two-dimensional charge distribution, then each contour  represents a certain
equipotential, and the electric field lines are always perpendicular to the equipotentials.
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Solutions to Problems

1. With the reference level at infinity, the electrostatic potential energy of the two protons is
 U  = (1/4πε0)(e2/r)

= (9 × 109 C2/N · m2)(1.6 × 10–19 C)2/(5 × 10–15 m) =  4.6 × 10–14 J .

2. With the reference level at infinity, the electrostatic potential energy of the two charges is
 U  = (1/4πε0)(q1q2/r) = – (1/4πε0)(Z e2/r)

= – (9 × 109 C2/N · m2)(92)(1.6 × 10–19 C)2/(3 × 10–12 m) =  – 7.1 × 10–15 J .

3. With the reference level at infinity, the potential energy of the two charges is
 U  = (1/4πε0)(q1q2/r)

= (9 × 109 C2/N · m2)(7.0 × 10– 7 C)(3.0 × 10– 6 C)/(0.20 m) = 9.5 × 10– 2 J .

4. The raisin will move directly away from the origin to infinity.  Because the raisin starts with no
kinetic energy, the initial potential energy becomes its final kinetic energy:

K f = Ui = 9.5 × 10– 2 J .

5. (a ) Because there is no other charge present, no force is required to bring the charge from infinity:
W = 0 .

(b) There is now a potential energy of the two charges, with the reference level at infinity.  We find
the work done by the electric field from

W  = – ∆U = (– 1/4πε0)(q1q2/r1)
= – (9 × 109 C2/N · m2)(3 × 10– 6 C)(5 × 10– 6 C)/(0.10 m) =  – 1.35 J .

(c) The work done by the external agent is the negative of the work done by the electric field:
W F = – W = + 1.35 J .

6. We find the work done by an outside agent from the work-energy theorem:
W = ∆K + ∆U = 0 + Ub – Ua = (1/4πε0)q1q2 (1/rb  – 1/ra)

      = (9 × 109 C2/N · m2)(+ 2.0 × 10– 5 C)(– 9.0 × 10– 4 C)[1/(5 × 10– 5 m) – 1/(5 × 10– 4m)] = – 2.9 × 10– 5 J .

7. The potential energy is a scalar that depends only on the distance.  The distances of the third charge
from each of the others are

ra1 = [(30 cm)2 + 0 + (50 cm – 5 cm)2]1/2 = 54.1 cm;
ra2 = [(30 cm)2 + 0 + (15 cm + 5 cm)2]1/2 = 62.6 cm.

The potential energy is
Ua = (1/4πε0)(q1q3/ra1 + q2q3/ra2) = (1/4πε0)q3(q1/ra1 + q2/ra2)
      = (9 × 109 C2/N · m2)(0.20 × 10– 6 C)[(3.0 × 10– 6 C)/(0.541 m) + (– 3.0 × 10– 6 C)/(0.626 m)]
      = 1.36 × 10– 3 J .

When the charge is placed at (30 cm, 0 cm, 0 cm), the distances become
rb1 = rb2 = [(30 cm)2 + 0 + (5 cm)2]1/2 = 30.4 cm.

The potential energy is
Ub = (1/4πε0)[(q1q3/rb1) + (q2q3/rb2)] = (1/4πε0)q3[(q1/rb1) + (q2/rb2)]

= (1/4πε0)(q3/rb1)(q1 + q2) = 0,   because q1 = – q2.
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8. (a ) Ua = (1/4πε0)(q1q3/ra1 + q2q3/ra2) = (1/4πε0)q3(q1/ra1 + q2/ra2)
= (9 × 109 C2/N · m2)(– 0.20 × 10– 6 C)[(3.0 × 10– 5 C)/(0.541 m) + (3.0 × 10– 5 C)/(0.626 m)]
=  – 1.9 × 10– 2 J .

Ub = (1/4πε0)(q1q3/rb1 + q2q3/rb2) = (1/4πε0)q3(q1/rb1 + q2/rb2)
= (1/4πε0)(q3/rb1)(q1 + q2)

= (9 × 109 C2/N · m2)[(– 0.20 × 10– 6 C)/(0.304 m)][(3.0 × 10– 5 C) + (3.0 × 10– 5 C)] =  – 3.6 × 10– 2 J .
(b) Changing the sign of the third charge will change the sign of the potential energy:

Ua = + 1.9 × 10– 2 J ,  Ub = + 3.6 × 10– 2 J .

9. The distances between the two charges are
ri = [(12 cm – 12 cm)2 + (60 cm – 25 cm)2 + (– 50 cm – 0)2]1/2 = 61.0 cm;
rf = [(12 cm – 12 cm)2 + (50 cm – 25 cm)2 + (25 cm – 0)2]1/2 = 35.4 cm.

The work done by an external agent to move the second charge is
W = ∆U = (1/4πε0)q1q2(1/rf – 1/ri)

= (9 × 109 C2/N · m2)(1.5 × 10– 6 C)(– 3 × 10– 6 C) [1/(0.351 m) – 1/(0.610 m)] = – 4.8 × 10– 2 J .

10. A stable radius requires a minimum in the potential energy.  With the reference level at infinity, the
potential energy of two like charges is positive and increases as r decreases.  Thus there will be no
minimum and no stable orbit.

11. The electric potential for two charges is
V = (1/4πε0)(q1/r1 + q2/r2) .

Because both charges are negative, the only place where V can be 0 is  r = ∞.

12. The potential is a scalar that depends only on the distance.  The potential for two charges is
V = (1/4πε0)(q1/r1 + q2/r2) .

If the potential is 0 at a point x, we have
0 = (1/4πε0)[(3 × 10– 6 C)/|(x – 14 cm)|  +  (– 4 × 10– 6 C)/|(x – 15 cm)|],

which gives 3|x – 15 cm|= 4|x – 14 cm|.   No position between the two charges gives V = 0.
For a point outside the two charges, we have

3(x2 – 15 cm) = 4(x2 – 14 cm), which gives x = 19 cm.

13. We find the value of the charge from
V = (1/4πε0)q/r

0.12 V = (9 × 109 C2/N · m2)q/(2.5 × 10– 3 m), which gives q = 3.3 × 10–14 C.

14. Because the total energy of the proton is conserved, we have
∆K + ∆U = 0;
!m(vB

2 – vA
2) + q(VB – VA) = 0;

VB – VA = – !(m/q)(vB
2 –  vA

2)
  = – ![(1.67 × 10–27 kg)/(1.6 × 10–19 C)][(8 × 105 m/s)2 – (5 × 104 m/s)2] =   + 3.3 kV.

15 . We find the work done by an external agent from the work-energy theorem:
W = ∆K + ∆U = 0 + q(Vb – Va)

= (3.0 × 10– 7 C)[+ 17 kV – (+ 3.0 kV)](103 V/kV) = + 4.2 × 10– 3 J .

16. We find the work done by an external agent from the work-energy theorem:
W = ∆K + ∆U = 0 + q(Vb – Va) = (3 × 10– 8 C)[+ 27 kV – (+16 kV)](103 V/kV) =  + 3.3 × 10– 4 J .
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17. We find the potential energy of the system of charges by adding the work required to bring the three
charges in from infinity successively:

W 1 = q1V0 = 0;
W 2 = q2V1 = q2(1/4πε0)q1/r12 = (1/4πε0)q1q2/r1 2;
W 3 = q3V2 = q3(1/4πε0)(q1/r1 3 +  q2/r2 3) = (1/4πε0)(q1q3/r1 3 + q2q3/r2 3) .

The total potential energy is
U = W1 + W2 + W3 = (1/4πε0)(q1q2/r1 2 + q1q3/r1 3 + q2q3/r2 3)
    = (9 × 109 C2/N · m2)[(2 mC)(0.5 mC)/(1 m) +  (2 mC)(–1.5 mC)/(0.5 m) +

          (0.5 C)(–1.5 C)/(1.5 m)](10– 3 C/mC)2 =  – 5.0 × 104 J .

18. For each positive-negative pair of equal charges, V = 0 at points
that are equidistant from the charges.  From the placement of
the charges, we see that the points in the xz-plane and in the
yz-plane will have V = 0.

19. (a ) The diameter of a circle subtends an angle of 90° at any point on the
circle.  Thus the distance from the negative charge to the point is

r2 = [(2R)2 – r1
2]1/2 = [(50 cm)2 – (30 cm)2]1/2 = 40 cm.

The potential at the point is
V = (1/4πε0)(q1/r1 +  q2/r2)
     = (9 × 109 C2/N · m2)[(24 × 10–8 C)/(0.30 m) +  (– 10 × 10–8 C)/(0.40 m)]
     = + 5.0 × 103 V.

(b) The work required is
W = q ∆V = (– 0.2 × 10– 6 C)(5.0 × 103 V – 0) =  – 1.0 × 10– 3 J .

The negative value indicates that the negative charge wants to “fall” to the higher potential.

20. The origin is equidistant from the three charges.  If the side of the triangle is L, the distance from the
center to a corner is

r = (L/2)/cos 30° = (3 cm)/(2 cos 30°) = 1.73 cm.
The potential is

V = (1/4πε0)(q1/r1 +  q2/r2 +  q3/r3) .
Because the charges and distances are the same, we have

V = (1/4πε0)[3(q1/r1)] = (9 × 109 C2/N · m2)(3)(0.5 × 10– 6 C)/(1.73 × 10–2 m) = 7.8 × 105 V.

21 . If we let q = 10– 6 C, the charges are
q1 = 2q, q2 = – 3q, q3 = 5q, q4 = 3q.

The distances from each charge to the point are
r1 = [(30 cm)2 + (30 cm)2]1/2 = 42.4 cm;
r2 = r4 = [(30 cm)2 + (16 cm)2]1/2 = 34.0 cm;
r3 = [(16 cm)2 + (16 cm)2]1/2 = 22.6 cm.

The potential at the point is
V = (1/4πε0)(q1/r1 + q2/r2 + q3/r3 + q4/r4)
     = (1/4πε0)q[2/r1 + (– 3/r2) +  5/r3 +  3/r4]
     = (1/4πε0)q(2/r1 + 5/r3)

     = (9 × 109 C2/N · m2)(10–6 C)[2/(0.424 m) + 5/(0.226 m)] =  + 2.4 × 105 V.

–
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22. We find the potential energy of the system of charges by adding the
work required to bring the three charges in from infinity successively:

W 1 = q1V0 = 0;
W 2 = q2V1 = q2(1/4πε0)q1/r1 2= (1/4πε0)q1q2/r1 2;
W 3 = q3V2 = q3(1/4πε0)(q1/r1 3 +  q2/r2 3) = (1/4πε0)(q1q3/r1 3 +  q2q3/r2 3) .

The total potential energy is
U = W1 + W2 + W3 = (1/4πε0)[q1q2/r1 2 +  q1q3/r1 3 +  q2q3/r2 3)
     = (9 × 109 C2/N · m2)[(5 µC)(– 3 µC)/(10 × 10–3 m) +

 (3 µC)(– 2 µC)/(10 × 10–3 m) +  (– 3 µC)(– 2 µC)/(10√2 × 10–3 m)](10– 6 C/µC)2

     =  – 18.7 J .
The order in which the charges are brought in does not matter.

23. The distances from each charge to the origin are
r1 = [(15 mm)2 + (20 mm)2]1/2 = 25.0 mm;
r2 = [(15 mm)2 + (30 mm)2]1/2 = 33.5 mm;
r3 = [(25 mm)2 + (20 mm)2]1/2 = 32.0 mm.

The potential at the point is
V = (1/4πε0)(q1/r1 +  q2/r2 +  q3/r3)
     = (9 × 109 C2/N · m2)(10–6 C)[5/(0.025 m) + (– 3)/(0.0335 m) +

(– 2)/(0.032 m)]
     =  + 4.3 × 105 V.

24. The positive charge must be released from the positive plate.  We take the negative plate to be the
reference level of potential.  We find the speed that the pellet has at the negative plate from
conservation of energy:

∆K  = – ∆U;
!mvf

2 – 0  = – q(0 – V) = qV;
!(2 × 10– 6 kg)vf

2  = (3 × 10– 7 C)(600 V), which gives
vf = 13 m/s.

25. (a ) Let q1 = +12 µC, y1 = + 5.0 cm, q2 = – 20 µC, and y2 = – 9.0 cm. The distance r1 between q1 and the point
(x, 0) = (12.0 cm, 0) is r1 = (x2 + y1

2)1/2 = [(12.0 cm)2 + (5.0 cm)2]1/2 = 13 cm, while that between q2 and
the same point is r2 = (x2 + y2

2)1/2 = [(12.0 cm)2 + (– 9.0 cm)2]1/2 = 15 cm. The potential at that point due
to the two charges is  then

V(x, 0) = (1/4πε0)q1/r1 + (1/4πε0)q2/r2

= (9.0 × 109 C2/N · m2)[(+12 × 10–6 C)/(0.13 m) + (– 20 × 10–6 C)/(0.15 m)]
= – 3.7  × 105 V.

(b) The point (0, 0) is a distance y1 = 5.0 cm from  q1 and |y2|= 9.0 cm from q2. Thus
V(0, 0) = (1/4πε0)q1/y1 + (1/4πε0)q2/|y2|

= (9.0 × 109 C2/N · m2)[(+12 × 10–6 C)/(0.050 m) + (– 20 × 10–6 C)/(0.090 m)]
= + 1.6  × 105 V;

    
r 
E (0, 0) = [(1/4πε0)q1/y1

2](–    
ˆ j ) + [(1/4πε0)q2/y2

2]    
ˆ j 

= (9.0 × 109 C2/N · m2)[– (+12 × 10–6 C)/(0.050 m)2 + (– 20 × 10–6 C)/(0.090 m)2]    
ˆ j 

=     −(6.5 × 107  V/m) ˆ j .
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26. Put the origin of the x-axis at q1 = 2.5 µC, and the other charge, q2 = 7.5 µC, is located at x = L =  0.80 m on
the axis. Consider a point with coordinate x (0 < x < L). The electric potential at that point is the sum
of those due to the two charges:

V(x) = (1/4πε0)q1/x + (1/4πε0)q2/(L – x)
    = (9.0 × 109 C2/N · m2)[(2.5 × 10–6 C)/x  +  (7.5 × 10–6 C)/(0.80 m – x)]
    = [2.25 × 104/x +  6.75 × 104/(0.80 – x)] V,  where x is in meters.

Set E(x) =  – dV/dx = – (d/dx)[2.25 × 104/x +  6.75 × 104/(0.80 – x)]
 = 2.25 × 104/x2 –  6.75 × 104/(0.80 – x)2 = 0

to obtain the position where E = 0:    x = 0.29 m.
If the test charge q is positive, then as it moves from the equilibrium toward either q1 or q2 closely
enough, it will be pushed back. So the equilibrium is stable. If the test charge is negative then the
equilibrium is unstable.
You can verify that by taking d2V/dx2 at the equilibrium position. It turns out that d2V/dx2 > 0 at the
equilibrium position, so the electrostatic energy U = qV is a minimum  for q > 0, indicating stable
equilibrium; and U = qV is a maximum for q < 0, indicating unstable equilibrium.

27. (a ) From the symmetry of the charge distribution, we see that the electric
field is perpendicular to the slab and away from the centerline.
This means that

EA = 0.
To find the field at B, we construct a cylinder of height x with its axis
perpendicular to the slab as a Gaussian surface.  One end of area A is
placed on the centerline, where the field is 0.  Because the field is
parallel to the sides of the cylinder, there is flux only through the
outer end, so we have
Ç

r 
E  · d

r 
A  = EA = Qenclosed/ε0 .

If the end is at point B, the enclosed charge is ρAx and we have
EB = ρx/ε0 = (10– 5 C/m3)x/(8.85 × 10–12 C2/N · m2)

     = (1.13 × 106 N/C · m)x,  x < 1 cm.
If the end is at point C, the enclosed charge is ρAd/2 and we have

EC = ρd/2ε0 = (10– 5 C/m3)(2 × 10– 2 m)/2(8.85 × 10–12 C2/N · m2)

                                 = 1.13 × 104 N/C,  x > 1 cm.
As expected, the field outside the slab is uniform.

(b) We find the potential from the field by integrating over a path
perpendicular to the slab:      (c)

VB = VA – Einside · ds
0

x
= 0 – (1.13 × 106 N/C·m) x′ dx ′

0

x

= – (5.65 × 105 V/m2)x2, x < 1 cm.

The potential at the edge of the slab is
Vedge = – (5.65 × 105 V/m2)(0.01 m)2 = – 56.5 V.

For the potential at point C we have

VC = Vedge – Eoutside · ds
edge

x
= – (56.5 V) – (1.13 × 104 N/C) dx′

0.01 m

x

= – 56.5 V – (1.13 × 104 V/m)(x – 0.01 m), x > 1 cm

= + 56.5 V – (1.13 × 104 V/m)x , x > 1 cm.

A
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28. We need to find the potential energy stored in the charge Q distributed uniformly over the spherical
shell.  We do this by successively bringing a differential charge in from infinity.  The total potential
energy is the sum (integral) of the differential work done.  As we bring in a differential charge, the
charge q already on the shell appears to be a point charge, so the work required to bring in the next
differential charge is

dW = (1/4πε0)(q/r) dq.
The potential energy is the total work required:

   
U1 = W1 = 1

4πε0

q
R

dq
0

Q

= 1
2

1
4πε0

Q
2

R
.

For a shell with half the radius, we have
U2 = !Q2/4πε0(R/2) = 2U1.

The work required to move the charges is
W = ∆U = 2U1 – U1 = U1 = !Q2/4πε0R .

29. We consider the sphere to consist of an infinite number of spherical shells with thickness dr and charge
dq = ρ4πr2 dr, where the density of charge is

ρ = 3Q/4πR3.
We choose the potential reference level at infinity.
At a point outside the sphere, all of the shells, and thus the sphere, are equivalent to point charges:

Voutside = Q/4πε0r, when r > R .
At a point inside the sphere, r < R, there are two contributions to the potential.
All of the shells with radius less than r are equivalent to point charges:

V1 = q/4πε0r = (ρ4πr3/3)/4πε0r = ρr2/3ε0.
For a shell with radius greater than r, the potential anywhere inside is constant and equal to the
potential on the shell:

dV =  dq/4πε0r = ρ4πr2 dr/4πε0r = ρr dr/ε0.
We find the potential contribution from all of the shells with r < r′ < R by integrating:

   
V2 = ρ

ε0
r′ dr′

r

R

= ρ
ε0

r′
2

2 r

R

= ρ
2ε0

R2 – r 2 .

The total potential is
  Vinside = V1 + V2 = (ρr2/3ε0) + [ρ(R2 – r2)/2ε0]

= (ρ/ε0)[(R2/2) – (r2/6)] = (3Q/4πε0R3)[(R2/2) – (r2/6)]
=  (Q/8πε0R)[3 – (r/R)2], when r < R .

If we compare the values at r = R, we get
Voutside = Q/4πε0R   and   Vinside = (Q/8πε0R)(3 – 1) = Q/4πε0R = Voutside.

30. (a ) (b)
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39. From the spatial dependence of the electric potential, V(x, y, z) = Q/4πε0x, we find the components of
the electric field from the partial derivatives of V:

Ex = – ∂V/∂x = Q/4πε0x2;
Ey = – ∂V/∂y = 0;
Ez = – ∂V/∂z = 0.

We can write the electric field: 
r 
E  =     (Q/4πε0x2 ) ˆ i .

40. From the spatial dependence of the electric potential, V(x, y, z) = Ax2y2 + Byz2 + C, we find the
components of the electric field from the partial derivatives of V:

Ex = – ∂V/∂x = – 2Axy2;
Ey = – ∂V/∂y = – 2Ax2y – Bz2;
Ez = – ∂V/∂z = – 2Byz.

We can write the electric field: 
r 
E  =   −(2Axy2 )ˆ i − (2Ax2y + B z2)ˆ j − (2Byz) ˆ k .

41. From the spatial dependence of the electric potential, V(x) = a0 + a1x, the electric field will have only
an x-component, which we find from the partial derivative of V:

Ex = – ∂V/∂x = – a1  = – (– 6.68 V/m) = + 6.68 V/m.

We can write the electric field:   
r 
E  = (6.68 V/m) ˆ i .

42. Because the electric field is along the x-axis, we find the the field from

    
r 
E  = – (∂V/∂x) ˆ i 

    = – (∂/∂x)[Q/4πε0(R2 + x2)1/2] ˆ i  = (– Q/4πε0)(– !)[2x/(R2 + x2)3/2] ˆ i ;
r 
E  = Qx/[4πε 0(R2 + x2)3/ 2] ˆ i .

43. With the dipole pointing in the x-direction, the potential is
V = (p cos θ)/4πε0r2 = px/4πε0r3.

We find the components of the electric field from the partial derivatives of V.  For the x-component, we
have

Ex = – ∂V/∂x = – (p/4πε0r3) – [– (3px/4πε0r4)(∂r/∂x)].
From r2 = x2 + y2 + z2, we have

2r(∂r/∂x) = 2x,   or  ∂r/∂x = x/r, so we get
Ex = – (p/4πε0r3) + (3px2/4πε0r5) .

Similarly, we have
Ey  = – ∂V/∂y = – [– (3px/4πε0r4)(∂r/∂y)]

= + 3pxy/4πε0r5;
Ez  = – ∂V/∂z = – [– (3px/4πε0r4)(∂r/∂z)]

= + 3pxz/4πε0r5.
Along the bisector (the y-axis), x = 0, so we have

r 
E  = −(p/4πε0r 3) ˆ i .

Note that the symmetry along the y-axis shows us that the field there has only an x-component.

44. From the symmetry of the charge distribution, we know that the electric field is radial.  From the
spatial dependence of the electric potential, V(r) = (Q/2πε0)[A(r/R) + B(r/R)2 + C], we find the electric
field from

Er = – ∂V/∂r =  – (Q/2πε0)[(A/R) + (2Br/R2)] radial .
If the potential is zero at the surface, we have

V(R) = 0 = (Q/2πε0)(A + B + C), which gives C = – A – B .
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45. From the symmetry of the charge distribution, we know that the electric field is radial, so we find
the electric field from

Er = – ∂V/∂r.
For r < R, we have

Vr < R = (Q/4πε0R)[– 2 + 3(r/R)2];
Er < R = – (Q/4πε0R)(+ 6r/R2) = – (Q/4πε0)(6r/R3), or
r 
E r < R =     (Q/4πε0 ) (6r/R 3) ˆ r .

For r > R, we have
Vr > R = Q/4πε0r;
Er > R = – (– Q/4πε0r2), or

    
r 
E r > R = (Q/4πε0 ) ˆ r .

46. If we choose a sphere of radius r < R as a Gaussian surface, we have
Ç

r 
E  · d

r 
A  = E4πr2 = Qenclosed/ε0 ,    or

Qenclosed = – ε0(Q/4πε0)(6r/R3)4πr2 = – 6Qr3/R3.
We set up the integral to find the enclosed charge, by using a spherical shell of radius r′ and
thickness dr′ for the differential element.  We also write the right-hand side as an integral:

   ρ4πr′2 dr ′
0

r

= – 18Q/R3 r′2 dr′
0

r

.

Comparing the two integrands, we see that for   r < R,  ρ = – 4.5Q/πR3,    a constant.
If the Gaussian surface is just inside r = R, the total enclosed charge is – 6Q.
If we choose a sphere with a radius r just slightly greater than R as a Gaussian surface, we have

Ç
r 
E  · d

r 
A  = E4πR2 = Qenclosed/ε0 ,  or

Qenclosed = ε0(Q/4πε0R2)4πR2 = Q.
Because there is a charge of – 6Q inside the sphere, there must be a charge of + 7Q on the surface of
the sphere to give a net charge of Q:

 r = R, q = + 7Q .
If we choose a sphere with a radius r > R as a Gaussian surface, we have

Ç    
r 
E  ·       d

r 
A  = E4πr2 = Qenclosed/ε0 ,    or

Qenclosed = ε0(Q/4πε0r2)4πr2 = Q.
Because this is the net charge on the sphere, we have   r > R, ρ = 0.
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47. From the spatial dependence of the electric potential,
V(x, y) = (Q/4πε0L){tan– 1[y/(x – a0)] – 2 tan– 1(y/x) + tan– 1[y/(x + a0)]},

we find the components of the electric field from the partial derivatives of V:
    

Ex = –
∂V

∂x
=

– Q
4πε0L

1

1 +
y

x – a0

2

– y

x – a0
2

– 2
1

1 + y
x

2

– y

x2
+

1

1 +
y

x + a0

2

– y

x + a0
2

=
– Q

4πε
0L

–
y

x – a0
2

+ y2
+

2y

x
2 + y

2 –
y

x + a0
2

+ y2
.

We expand the denominators and use the approximation, 1/(1 ± z) ˛ 1 — z, when z <<  1:
   

Ex = – Q
4πε

0L
– y

x
2 + y

2 – 2a0x + a0
2

+ 2y

x
2 + y

2
– y

x
2 + y

2 + 2a0x + a0
2

= Qy

4πε0L(x
2 + y

2)
1

1 – (2a0x – a0
2)/(x

2 + y
2)

– 2 + 1

1 + (2a0x – a0
2)/(x

2 + y
2)

∼
Qy

4πε0L x
2 + y

2
1 +

2a0x – a0
2

x2 + y2
– 2 + 1 –

2a0x – a0
2

x2 + y2
=

– 2Qya0
2

4πε
0L(x2 + y2)2

.

We use the same approximation for the y-component:
    

Ey = –
∂V
∂y

= – Q
4πε

0L
1

1 + [y/(x – a0)]
2

1
x – a0

– 2 1
1 + (y/x)2

1
x

+ 1

1 + [y/(x + a0)]
2

1
x + a0

= – Q
4πε

0L

x – a0

(x – a0)
2 + y2

– 2x

x
2 + y

2
+

x + a0

(x + a0)
2 + y2

=
– Q

4πε
0L

x – a0

x2 + y2 – 2a0x + a0
2

–
2x

x2 + y2
+

x + a0

x2 + y2 + 2a0x + a0
2

= – Qx

4πε
0L x2 + y2

1 – (a0/x)
1 – (2a0x – a0

2)/(x2 + y2)
– 2 +

1 + (a0/x)
1 + (2a0x – a0

2)/(x2 + y2)

∼
– Qx

4πε
0L x2 + y2

1 –
a0

x
1 +

2a0x – a0
2

x2 + y2
– 2 + 1 +

a0

x
1 –

2a0x – a0
2

x2 + y2
=

– 6Qxa0
2

4πε0L x
2 + y

2 2
.

The total electric field is

E =
2Qa0

2

4πε0L x2 + y2 2
− yi − 3 xj =

2Qa0
2

4πε0Lr4
− r sin θ i − 3 r cos θ j

=
2Qa0

2

4πε0Lr3
− sin θ i − 3 cos θ j .



Chapter 24:  Electric Potential

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 24-15

48. For two large, parallel plates, we have
E = – ∆V/#d;
7 × 103 V/m = (200 V)/d, which gives d = 0.029 m = 2.9 cm.

49. We find the charge from the expression for the potential on the axis of the ring:
V = (1/4πε0)Q/(R2 + x2)1/2;

5 V = (9 × 109 C2/N · m2)Q/[(0,10 m)2 + (0.15 m)2]1/2, which gives Q = 1.0 × 10–10 C.

50. (a ) Choosing y up as positive, we find the potential from the field by integrating:
V = – ∫     

r 
E  · d    

r 
s  = – (– E ) ∫ dy  =  Ey  +  (a constant) .

(b) The most convenient reference point is  V = 0 at surface.
(c) The electric potential energy is  Ue = qE h .

The gravitational potential energy is  Ug = mg h , so they have the same form.
(d) For the electric force to balance the force of gravity, we need a negative charge with magnitude

given by
qE = mg;
q(100 N/C) = (50 kg)(9.8 m/s2) =  4.9 C of negative charge.

51 . From symmetry, we know that the electric field will be radially
away from the line charge, with a magnitude independent of
the direction.  For a Gaussian surface we choose a
cylinder of length L and radius R, centered on the line.  On the ends
of this surface, the electric field is not constant, but 

r 
E  and d

r 
A  are

perpendicular, so we have     
r 
E  ·       d

r 
A  = 0.  On the curved side, the field

has a constant magnitude and   
r 
E  and       d

r 
A  are parallel, so we haver 

E  · d
r 
A  = E dA.  For Gauss’ law, we have

E · dA = E · dA
ends

+ E · dA
side

= 0 + EA side = Q/ε0;

E2πRL = λL/ε0 , which gives
E = 2λ/4πε0R  radial.

We find the potential by integrating along a radial line:
V = – ∫     

r 
E  · d    

r 
R  = – (2λ/4πε0) ∫ dR/R =  – (2λ/4πε0) ln(R) + (a constant) .

52. The potential at the origin from a differential element of
the charge is

dV = (1/4πε0)(dq/R).
To find the potential at the origin, we add (integrate) the
contributions from all elements:

V = ∫ (1/4πε0)(dq/R)
     = (1/4πε0R)∫ dq = q/4πε0 R = λπR/4πε0R

     = λ/4ε0 .

R

L

x

y

θ

dq

R
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53. We choose the point P as the origin.  The potential at P from a
differential element of the rod, which has a charge
dq = (q/L) dx, is

dV = (1/4πε0)(dq/x).
To find the potential at P, we add (integrate) the
contributions from all elements:

   
V = 1

4πε0

q
L

dx
xD

D + L

= q
4πε0L

ln D + L
D

= (9 × 109 N·m2/C2)(2 × 10– 6 C)
0.2 m ln 0.1 m + 0.2 m

0.1 m = 9.9 × 104 V.

54. We choose a differential element of the rod at
position z′, length dz′, and charge λ dz′.  From
the diagram, we see that
r2 = x2 + y2 + z2 and r′2 = x2 + y2 + (z –z′)2.
The potential from the differential element at
the point (x, y, z) is

dV = (1/4πε0) dq/r′ = (λ/4πε0) dz′/r′.
The potential from the rod is 

              

   
V = λ

4πε0

dz′
r′z′ = – L/2

z′ = L/2

= λ
4πε0

dz′
x2 + y2 + z – z′

2

z′ = – L/2

z′ = L/2

= – λ
4πε0

ln z – z′ + x2 + y2 + z – z′
2

z′ = – L/2

z′ = L/2

= – λ
4πε0

ln
z – (L/2) + x 2 + y2 + z – L/2

2

z + (L/2) + x 2 + y2 + z + L/2
2

= λ
4πε0

ln
z + L/2 + x2 + y2 + z + L/2

2

z – L/2 + x2 + y2 + z – L/2
2 .

To find the potential when r » L, we use the approximations (1 ± u)1/2 ˛ 1 ± (u/2), 1/(1 ± u) ˛ 1 — u, and
ln(1 + u) ˛ u, when u << 1:

   

V = λ
4πε0

ln
z + (L/2) + x 2 + y2 + z + L/2

2

z – (L/2) + x 2 + y2 + z – L/2
2

= λ
4πε0

ln
z + L/2 + r2 + zL + L/2

2

z – L/2 + r2 – zL + L/2
2 ∼ λ

4πε0
ln

z + L/2 + r 1 + zL/r2

z – L/2 + r 1 – zL/r2

∼ λ
4πε0

ln
z + L/2 + r 1 + zL/2r2

z – L/2 + r 1 – zL/2r2
= λ

4πε0
ln

z + r 1 + L/2r

z + r 1 – L/2r

∼ λ
4πε0

ln 1 + L/2r
2

= 2λ
4πε0

ln 1 + L/2r ∼ 2λ
4πε0

L
2r

= λL
4πε0r

= Q
4πε0r

, where Q = λL and r » L.

P
LD

x
dx

x

x

y

z

z´
dz´

ŕ
L/2

– L/2

(x, y, z)
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55. (a ) The potential for the two charges is the sum:
   

V = 1
4πε0

3q0
x – x0

+ 1
4πε0

– q0

x + x0

2

= q0

4πε0

3
x – x0

– 1
x + x0

2

.

(b) When x >>  x0 , we use the approximation 1/(1 ± u) ˛ 1 — u + u2 — u3 + …, when u  <<  1:

   
V =

q0

4πε0x
3

1 – x0
x

– 1
1 + x0

2x

= q0

4πε0

3
x 1 + x0

x + x0
x

2

+ x0
x

3

+ .. . – 1
x 1 – x0

2x
+ x0

2x

2

– x0

2x

3

+ .. .

=
q0

4πε0

2
x

+ 7
2

x0

x2 + 11
4

x0
2

x3 + 25
8

x0
3

x4 + .. . .

(c) At large values of x, the contribution of each term to the total decreases.
The first term from part (b) is the potential of a point charge, with qnet = 2q0 .

The second term is the potential of a dipole, with  p = 7q0x0/2.
(d) For the point charge plus the dipole to be within 1% of the exact answer, we have

  2
x

+ 7
2

x0

x2 = 0.99 3
x – x0

– 1
x + x0/2

= 0.99
x

3
1 – x0/x

– 2
2 + x0/x

.

If we let x0/x = y, we have

2 + 7
2 y = 0.99

3 2 + y – 2 1 – y

1 – y 2 + y
= 0.99 4 + 5y

2 + y – y2 .

A numerical solution gives y = – 0.0825, + 0.0875.  The values of x are     – 12.1x0 , + 11.4x0.
Thus if  |x| > 12.1x0  ,  the point charge plus the dipole will be within 1% of the exact answer.

56. The minimum work brings the charge to the point with no kinetic energy.  We use the expression for the
potential on the axis of a disk:
     W∞ → a = q(Va – V∞) = q(Q/2πε0R2)[(R2 + x2)1/2 – x]

   = [(3.2 × 10– 7 C)(6.0 × 10– 8 C)(2)(9 × 109 C2/N · m2)/
 (0.028 m)2]{[(0.088 m)2 + (0.028 m)2]1/2 – 0.088 m}

   =  1.8 × 10– 3 J .

57. There is no change in the kinetic energy.  We use the expression for the potential on the axis of a ring:
W a → b  = q(Vb – Va) = q(Q/4πε0)[(R2 + xb

2)–1/2 – (R2 + xa
2)–1/2]

= (– 8.5 × 10– 8 C)(3.5 × 10– 7 C)(9 × 109 C2/N · m2)  ×
{[(0.24 m)2 + (0.85 m)2]–1/2 – [(0.24 m)2 + (0.28 m)2]–1/2}

= + 4.2 × 10– 4 J .

58. At the surface of a sphere, we have
V = Q/4πε0R    and    E = Q/4πε0R2, which gives
V = ER = (2.8 × 106 V/m)(0.03 m) = 8.4 × 104 V = 84 kV.
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59. After the connection, the two spheres must have the same potential:
V = (1/4πε0)(q1′/r1) = (1/4πε0)(q2′/r2), or   q1′ = (r1/r2)q2′.

Because charge is conserved we have
q1 + q2 = q1′ + q2′ .

When we combine these two equations, we get
q2′ = (q1 + q2)[r2/(r1 + r2)].

The amount of charge that moves between the two spheres is
∆q2 = q2′ –  q2 = (q1r2 – q2r1)/(r1 + r2) .

60. The electric field that causes air to ionize is E = 2.8 × 106 V/m. Thus
∆V = E ∆x = (2.8 × 106 V/m)(0.002 m) = 5.6 × 103 V ≈ 6 kV.

61. The potential of the dome of radius R carrying a charge Q is
V = Q/4πε0R. Solve for Q:

Q = 4πε0RV = (0.61 m)(5.5  × 106 V)/(9.0 × 109 C2/N · m2) = 3.7  × 10– 4 C.
The energy gained by a proton (charge e) after being accelerated by this potential is

eV = e(5.5 MV) = 5.5 MeV, or (5.5 × 106 eV)(1.6 × 10–19 J/eV) = 8.8 × 10–13 J .
To find the resulting speed v of the proton, let

eV = ! mv2, or   v = (2eV/m)1/2 = [2(8.8 × 10–13 J)/(1.67 × 10–27 kg)]1/2 = 3.2 × 107 m/s.

62. We call the radius of the initial drops R1 and the radius of the combined drop R2.  Because the volume
of the mercury does not change, we have

)πR2
3 = 2()πR1

3), which gives R1/R2 = (!)1/3.
We use the potential for a spherical charge:

V1 = q/4πε0R1 , and V2 = 2q/4πε0R2 , so we have

V2/V1 = 2R1/R2 = 2(!)1/3;    V2 = 2(!)1/3(70 V) = 1.1 × 102 V.

63. We label the larger sphere 1 and the smaller sphere 2.  The wire connecting the spheres means that the
potentials of the spheres are the same:

Q1/4πε0R1 = Q2/4πε0R2 , which gives Q1 = (R1/R2)Q2 = 3Q2.
We combine this with the conservation of charge:

Q1 + Q2 = Q, to get   Q2 = Q/4    and  Q1 = 3Q/4.

64. (a ) Inside the inner shell, there is no charge, so we have
E = 0, r < R .

Between the two shells, the electric field is that of the inner shell:
E = q/4πε0r2 radial, R < r < 1.5R .

Outside the two shells, the two shells look like a point charge with Q = q – 3q = – 2q:
E = – 2q/4πε0r2 radial, 1.5R < r.

(b) We add the potentials from the two shells at each location.  Because the potential inside
a spherical shell is constant and equal to the potential on the surface, we have

VR  = (q/4πε0R) + (– 3q/4πε01.5R) = – q/4πε0R
V1.5R = (q/4πε01.5R) + (– 3q/4πε01.5R) = – 4q/4πε03R.

The potential difference is
V1.5R – VR = – q/12πε0R .

(c) When the two shells are connected, the potential difference between the two shells must be 0.  The
system can be considered as one conductor, which can have no charge inside.
All of the charge moves to the outer shell, with qnet = – 2q .
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65 . The number of raindrops per unit volume is n = 1.2 × 101 0/m3. Each raindrop carries a charge q = 16 × 10–19

C, so the total charge Q on a spherical piece of cloud of volume V is
Q = nqV = nq ()πR3),  where R is the radius of the cloud. The electric field E outside the cloud is

then
E = Q/4πε0R2 = nq ()πR3)/4πε0R2 = nqR/3ε0. Equate this to Emax = 3.2 × 106 V/m to obtain the radius

at which electrical breakdown occurs:
R =  3ε0Emax/nq

    = 3(8.85 × 10–12 N · m2/C2)(3.2 × 106 V/m)/[(1.2 × 101 0/m3)(16 × 10–19 C)]
    = 4.4 × 103  m = 4.4 km.

66. Let the charge on the sphere of radius R1 = 0.05 m be Q1 and that on the other one be Q2. Then
Q1 + Q2 = Q = 40 µC.

Also, Since the spheres are connected by a metal wire they must be at the same potential:
V1 = V2 ;
Q1/4πε0R1 = Q2/4πε0R2 . Thus
Q1 = Q/(1 + R2 /R1) = 40 µC/(1 + 0.05 m/ 0.08 m) = 25 µC   and

 Q2 = Q – Q1  = 40 µC  – 25 µC  = 15 µC.

67. (a ) The wire connecting the spheres means that the potentials of the spheres are the same:
q1/4πε0R1 = q2/4πε0R2 ;
q1 = (R1/R2)q2 = [(20 mm)/(100 mm)]q2 , which gives  q2 = 5q1.

The Coulomb force is
F = (1/4πε0)(q1q2/r2) ;
3.5 N = (9 × 109 C2/N · m2)(5q1

2)/(0.25 m)2, which gives
q1 = 2.2 × 10– 6 C = 2.2 µC    and   q2 = 5q1 = 11 µC.

(b) The electric fields at the surfaces of the spheres are
E1 = (1/4πε0)(q1/R1

2) = (9 × 109 C2/N · m2)(2.2 × 10– 6 C)/(0.020 m)2 =  4.95 × 107 V/m, radial .

E2 = (1/4πε0)(q2/R2
2) = (9 × 109 C2/N · m2)(11 × 10– 6 C)/(0.100 m)2 =  9.90 × 106 V/m, radial .

68. (a ) At the surface of the balloon, we have
V1 = (1/4πε0)(q/R1) = (9 × 109 C2/N · m2)(1.5 × 10– 5 C)/(4.30 m) = 3.1 × 104 V.

(b) Because the charge is conserved, we have
V2 = (1/4πε0)(q/R2) = (9 × 109 C2/N · m2)(1.5 × 10– 5 C)/(3.10 m) = 4.4 × 104 V.

(c) The energy increases because the outside pressure compresses the balloon and therefore does
positive work.  This increases the charge density on the surface, which means that the positive
charges are forced closer.

69. (a ) The increase in kinetic energy comes from the decrease in potential energy, which means the
proton must go from high to low potential:

∆K = K – 0 = – ∆U = – q ∆V;
K = – (+ 1 e)(– 5.5 × 106 V) =  + 5.5 × 106 eV.

To convert units, we have
K = (+ 5.5 × 106 eV)(1.6 × 10–19 J/eV) =  8.8 × 10–13 J .

(b) We find the final speed from
K = !mv2;
8.8 × 10–13 J = !(1.67 × 10–27 kg)v2, which gives
v =  3.3 × 107 m/s.



Fishbane, Gasiorowicz, and Thornton

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 24-20

70. The maximum potential is reached when the charge on the sphere creates an electric field large enough
to break down the air. At the surface of a sphere, we have

E = (1/4πε0)(Q/R2)   and   V = (1/4πε0)(Q/R),   or

V = ER = (2.8 × 106 V/m)(0.41 m) = 1.1 × 106 V.
We find the charge on the sphere from

V = (1/4πε0)(Q/R);

1.1 × 106 V = (9 × 109 C2/N · m2)Q/(0.41 m), which gives  Q =  5.2 × 10– 5 C.

71. (a ) The maximum potential is reached when the charge on the sphere creates an electric field large
enough to break down the air. At the surface of a sphere, we have

E = (1/4πε0)(Q/R2)   and   V = (1/4πε0)(Q/R),   or

V = ER = (3 × 106 V/m)(1.3 m) = 3.9 × 106 V.
(b) The increase in kinetic energy comes from the decrease in potential energy, which means the

proton must go from high to low potential:
∆K = K – 0 = – ∆U = – q ∆V;
K = – (+ 1 e)(– 3.9 × 106 V) = + 3.9 × 106 eV = 3.9 MeV  (6.2 × 10–13 J) .

(c) We find the charge on the sphere from
V = (1/4πε0)(Q/R);

3.9 × 106 V = (9 × 109 C2/N · m2)Q/(1.3 m), which gives Q = 5.6 × 10– 4 C.

72. For parallel plates, we have
∆V = Ed;
 5 × 103 V = (3 × 106 V/m)d, which gives  d = 1.7 × 10– 3 m = 1.7 mm.

73. The potential at a point on the x-axis between the disks is
   

V = Q
2πε0R

2 R2 + (a + x)2 – (a + x) + R2 + (a – x)2 – (a – x)

= Q
2πε0R

2 R
2 + (a + x)2 + R

2 + (a – x)2 – 2a .

74. The potential of the two rings at a point on the x-axis is
   

V = Q
4πε0

1
R

2 + (x – a)2 – 1
R

2 + (x + a)2 .

75. When x >> a and  x>> R, we write the solution for the two rings as
   

V = Q
4πε0

1

x R
x

2

+ 1 – a
x

2
– 1

x R
x

2

+ 1 + a
x

2

= Q
4πε0x

1

1 – 2a
x

+ a2 + R
2

x2

– 1

1 + 2a
x

+ a2 + R
2

x 2

.

Because x >> a and x >> R, we use the approximation (1 + u)–1/2 ˛ 1 – !u to get
   

V ∼ Q
4πε0x

1 + a
x

– 1
2

a2 + R
2

x2 – 1 + a
x

+ 1
2

a2 + R
2

x2 ∼ Q
4πε0x

2a
x ∼ Qa

2πε0x
2 .

We see that the potential is that of a dipole; from far away the disks approximate two point charges
separated by 2a.
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76. If the second charge is stationary, the total energy is potential, which we find by considering one
charge to be at the potential created by the other charge:

U = (– q)(1/4πε0)(Q/r) = – qQ/4πε0r .
For the circular motion, the Coulomb force must provide the centripetal acceleration:

F = qQ/4πε0r2 = mv2/r, which gives mv2 = qQ/4πε0r.
The total energy is

E = K + U
    = !mv2 + (– qQ/4πε0r) = (! – 1)(qQ/4πε0r) = – qQ/8πε0r .

Because the force is a central force, the angular momentum must be conserved; thus the angular velocity
is constant.

77. From Table 24–1, with V = 0 at r = ∞, we have the potential inside a nonconducting sphere:
V = (Q/8πε0R)[3 – (r2/R2)].

The potential energy of a charge – q is
U = – qV =  – (qQ/8πε0R)(3 –  r2/R2) .

The variable part of the potential energy has the form of the elastic potential energy of a spring:
U = !kr2,

so the motion can be an oscillation, like the mass on a spring.
Comparing the coefficients, we have

k = qQ/4πε0R3 .

78. With all electrons at infinity, which is the reference level, no work is required to place the first
electron at x = – 6 µm:

U1 = W1 = 0, first electron at x = – 6 µm.
To place the second electron at x = + 6 µm, we have

U2 = W2 = qVa = (– e)(1/4πε0)(– e/ra) = (1/4πε0)(e2/r)
= (9 × 109 C2/N · m2)(1.6 × 10–19 C)2/(6× 10– 6 m)
= 3.9 × 10–23 J,  second electron at x = + 6 µm.

To place the third electron at x = 0 nm, we have
U3 = W3 = qVb = (– e)(1/4πε0)[(– e/rb) + (– e/rb)] = (1/4πε0)(2e2/rb)

= (9 × 109 C2/N · m2)2(1.6 × 10–19 C)2/(6 × 10–6 m)
=  5.9 × 10–23 J, third electron at x = 0.

The order in which the electrons are moved will affect the individual terms but not the total energy of
9.8 × 10–23 J  (6.0 × 10– 4 eV).

79. If we consider the sodium ion in the upper left corner, we see from
symmetry that the net force must be along the diagonal:

Fnet = 2F– cos 45° – F+ = (e2/4πε0){(2 cos 45°/d2) – [1/(d√2)2]}
  = (e2/4πε0d2)(√2 – !)
  = [(1.6 × 10–19 C)2(9 × 109 C2/N · m2)/(2.5 × 10–19 m)2](√2 – !)
  = 3.4 × 10– 9 N toward the other Na+.

We find the work required from the potential energy change:
W = ∆U = e(V∞ – Vcorner) = (e/4πε0){0 – [– (2e/d) + (e/d√2)]}

= (e2/4πε0d)[2 – (1/√2)]
= [(1.6 × 10–19 C)2(9 × 109 C2/N · m2)/(2.5 × 10–19 m)][2 – (1/√2)]
= 1.2 × 10–18 J  (7.4 eV).

+

–+

–

Na+

Cl– Na+

Cl–

d

    
r 
F +     

r 
F −

    
r 
F −
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80. Because the point is not far away from the dipole, we find the potential from the sum of the potentials
of two point charges:

   
V = 1

4πε
0

q

x2 + y – a
2

1/2
+ – q

x2 + y + a
2

1/2

= q
4πε

0

1

x2 + y – a
2

1/2
– 1

x2 + y + a
2

1/2
.

We find the components of the electric field from the partial derivatives of V:

  

    
Ex = –

∂V
∂x

= – q
4πε

0

– x

x2 + y – a
2

3/2
– – x

x2 + y + a
2

3/2

= q
4πε

0

x

x2 + y – a
2

3/2
– x

x2 + y + a
2

3/2
;

Ey = –
∂V
∂y

=
– q

4πε
0

– y – a

x
2 + y – a

2
3/2 –

– y + a

x
2 + y + a

2
3/2

= q
4πε

0

y – a

x
2 + y – a

2
3/2

– y + a

x
2 + y + a

2
3/2

.

The electric field at the point (x, y) is

      

r 
E =

q
4πε0

x

[x2 + (y − a)2]3/2 −
x

[x2 + (y + a)2]3/ 2

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

ˆ i +
y − a

[x2 + (y − a)2 ]3/ 2 −
y + a

[x2 + (y + a)2 ]3/ 2

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

ˆ j 
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
.

At the point P, r = 3a   45° from the y-axis, and x = y = 3a cos 45° = 2.12a.  Thus

VP = 0.152q/4πε0a , and      
r 
E P = (q/ 4πε0a2 ) (0.114ˆ i + 0.023ˆ j ).

81. From Example 24–9, we know the potential on the axis of a ring is
V = Q/4πε0(R2 + x2)1/2.

From symmetry, the electric field is along the x-axis, which we
find from

    
r 
E  = – (∂V/∂x)    ̂  i 

    = – (∂/∂x)[Q/4πε0(R2 + x2)1/2]    ̂  i 

    = (– Q/4πε0)(– !)(2x)/(R2 + x2)3/2   ̂  i  =      [(Qx/4πε0(R2 + x2 )3/ 2 ] ˆ i .
To find the field from direct integration, we use the diagram.
Choosing a differential element of the ring, we see that the
symmetry of the charge distribution means that we need to
integrate the x-component:

E = ∫ dE x  = ∫ (1/4πε0)[dq/(R2 + x2)] cos θ.
To perform the integration, we must reduce the integrand to one variable.
If we compare the two ways, we see that the direct integration method requires the selection of
differential elements and the use of symmetry to handle the vector components,  plus the actual
integration.  Because potential is a scalar, finding the field by differentiating V is generally easier.

R  qθ
x

dq

      d
r 
E 
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82. For the positron, the increase in kinetic energy comes from the decrease in potential energy:
K f – Ki = – (Uf – Ui) = – e(Vf – Vi) ;
K f  – 0 = – e(1/4πε0)(0 –  e/ri) ;

K f  = (e2/4πε0)(1/r0) = (1.60 × 10–19 C)2(9 × 109 C2/N · m2)/(6.5 × 10–10 m) = 3.5 × 10–19 J  (2.2 eV).

83. We find the change in potential energy from
∆U = – e ∆V = – e(Ze/4πε0)(1/r2 –  1/r1) = – (Ze2/4πε0)(1/r2 – 1/r1)

  = – (9 × 109 C2/N · m2)(2)(1.60 × 10–19 C)2(1/2 –  1/3)/(10–10 m) =  – 7.68 × 10–19 J .
For the electron orbiting the nucleus, the attractive Coulomb force provides the centripetal
acceleration:

Z e2/4πε0r2 = mv2/r, which gives mv2 = Ze2/4πε0r.
The change in kinetic energy is

∆K  =  !∆(mv2)= !(Ze2/4πε0)(1/r2 –  1/r1)

   = (9 × 109 C2/N · m2)(2)(1.60 × 10–19 C)2 (1/2  –  1/3)/(10–10 m) =  + 3.84 × 10–19 J .
The change in total energy is

∆E = ∆K + ∆U = + 3.84 × 10–19 J +  (– 7.68 × 10–19 J) =  – 3.84 × 10–19 J .
We see that the energy decreases as the electron gets closer to the nucleus; the energy is carried off by
light emitted by the electron.

84. In the diagram shown to the right, the distances
between each charge, labeled 1 through 4, to the
point P of interest, are given by

r1 = r3 = (R2 + a2)1/2 = (R2 + !L2)1/2,
r2 = R –  a = R –  L/√2,   and
r4 = R +  a = R +  L/√2.

The potential at point P is then
V = (1/4πε0)(Q1/r1 + Q2/r2 + Q3/r3 + Q4/r4)
    = (1/4πε0)[Q/(R2 + !L2)–1/2 –

Q/(R –  L/√2) + Q/(R2 + !L2)1/2 –
           Q/(R + L/√2)]

    = (2Q/4πε0R)[(1 + L2/2R2)–1/2  – (1 –
L2/2R2)–1]

    ≈ (2Q/4πε0R)[(1 – L2/4R2) – (1 + L2/2R2)]
    = – 3QL2/(8πε0R3) .

Note that here we made use of the approximation
(1 + x)n ≈ nx, for x = L2/2R2  << 1.  Also, we assumed
that point P is aligned with the two negative
charges (Q2 = Q4 = – Q). Otherwise V will differ by a negative sign.

85. Assume that r1 > r2. Place the origin of the coordinate system at the center of both shells. For r > r2 the
electric field is identical to that of a point charge, Q =  q1 +  q2 , at the origin. So

V = (1/4πε0)Q/r  = (1/4πε0)(q1 +  q2)/r      (r2  < r) .
Between r1 and r2 , the E-field produced by q1 is zero, so the potential due to q1 remains the same as its
value at r1 , i.e., (1/4πε0)q1/r1. For q1 , the E-field is still equivalent to that of a point charge q1 at the
origin, so the contribution to V due to q1 is (1/4πε0)q1/r. Add both contributions up to obtain

V = (1/4πε0)(q2/r2 + q1/r )      (r1  < r < r2) .
Once r < r1 , there is no electric field, so the potential no longer changes once it reaches its value at r1.
Thus

V = (1/4πε0)(q1/r1 + q2/r2 )      (r  < r1) .

a a

a a

L

L

r1

r3

Q1 Q2

Q3Q4

O

P

OP = R
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86. Because the work done by the electric field of the dipole is independent of the path, we have
W a → b = q0(Vb – Va) .

The initial and final points are not far from the dipole, so we find the potentials for two point charges:
   Wa → b = q0[(1/4πε0)(q/rb2 – q/rb1) – (1/4πε0)(q/ra2  –  q/ra1)]

= (1/4πε0)(q0q)(1/rb2  –  1/rb1  –  1/ra2  +  1/ra1)
= (9 × 109 C2/N · m2)(3.0 × 10– 6 C)(5.0 × 10– 6 C)[1/(0.2 m) –  1/(0.6 m) –  1/(0.8 m)  +  1/(0.4 m)]
=  + 0.62 J .

87. (a ) From the force diagram, we apply ∑   
r 
F  = 0:

horizontal: T sin θ = F = kqq/r2;
vertical: T cos θ = mg.

If we divide the two equations, we get
tan θ = F/mg = kq2/r2mg = kq2/(2L sin θ)2mg
tan 30° = (9 × 109 N · m2/C2)(2.0 × 10– 6 C)2/[2(0.80 m) sin 30°]2m(9.8 m/s2) ,

which gives m = 9.9 × 10– 3 kg.
(b) With the electric potential reference level at infinity and the gravitational

potential reference level at
θ = 0°, we have

U = qV + mgy = (1/4πε0)(q2/2L sin θ) + mg(L – L cos θ)
     = [(9 × 109 N · m2/C2)(2 × 10– 6 C)2/2(0.80 m)(sin θ)] + (9.9 × 10– 3 kg)(9.8

m/s2)(0.80 m)(1 – cos θ)
     =  0.023/sin θ   +  0.078(1 – cos θ) .

88. If we neglect end effects, the electric field (the potential gradient) of each plane is uniform.  We find
the work required to move the second plane from

W = q2 ∆V = q2 (– E1 ∆x)
= – σ2L2(σ1/2ε0)[(a – (x2 – x1)] =  (σ1σ2L2/2ε0)(x2 – x1 – a) .

89. We use the analogy to the charged spherical shell.  When we are outside a charged cylindrical shell of
radius r′, the potential is that of a line charge: V = – (λ/2πε0) ln(r/a) with V = 0 at r = a.  When we are
inside a charged cylindrical shell of radius r′, the potential is the potential on the surface:
V = – (λ/2πε0) ln(r′/a).  For a point inside the cylinder, r < R, the potential has two contributions: the
sum (integral) of the shells inside r and the sum (integral) of the shells outside r.  For a shell of radius
r′, the linear charge density is dλ = ρ2πr′ dr′.  We find the potential from

   
V = – ρ2πr ′ dr ′

2πε0
ln r

a
0

r

+ – ρ2πr′ dr ′
2πε0

ln r′
a

r

R

= – ρ
ε0

ln r
a r ′ dr′

0

r

– ρ
ε0

r ′ln r ′
a dr′

r

R

= – ρ
ε0

ln r
a

r2

2 – ρ
ε0

r′2

2 ln r′
a – 1

2
r

R

= – ρr2

2ε0
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2ε0
ln R

a – 1
2 + ρr2

2ε0
ln r

a – 1
2

= – ρr2

4ε0
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2ε0
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a – 1
2 , r < R.

For a point outside the cylinder, r > R, all of the cylindrical shells appear to be line charges:
   

V = – ρ2πr′ dr ′
2πε0

ln r
a

0

R
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ε0

ln r
a r ′ dr′

0
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90. The charge density of the dielectric shell is
ρ = Q/[)π(R2

3 – R1
3)]

   = (5 × 10– 6 C)/{)π[(0.45 m)3 – (0.16 m)3]}
   = 1.4 × 10– 5 C/m3.

In the region where r < R1 = 16 cm, there is no electric field,
so the potential is constant.  Inside the dielectric shell,
R1 < r < R2 = 45 cm, we see from Table 24–1 that the
potential is proportional to – r2.  Outside the dielectric
shell, r > R2 , the shell is equivalent to a point charge at
the center, so the potential is proportional to 1/r.
We find the potential at r = 0  by adding (integrating)
the potentials of the differential spherical shells between R1 and R2:

                  V = k ∫ (ρ4πr2 dr)/r= 2πkρ (R2
2 – R1

2)
                       = 2π(9 × 109 C2/N · m2)(1.4 × 10– 5 C/m3)[(0.45 m)2 – (0.16 m)2]
                       = 1.4 × 105 V, r = 0.

Because the potential is constant from r = 0 to r = R1 , the potential at the inner radius is

1.4 × 105 V,   r = R1 .
Because the potential outside the shell is the same as that of a point charge, we find the potential at
r = R2 from

  V = (1/4πε0)(Q/R2)

= (9 × 109 N · m2/C)(5 × 10– 6 C)/(0.45 m) = 1.0 × 105 V,   r = R2 .

91. To find the total potential energy of the sphere, we consider it to be made up of differential shells and
add (integrate) the work required to bring each shell in from infinity.
If a sphere of radius r < R has been formed, the potential at the surface is

V = (1/4πε0)(q/r) = (1/4πε0)(ρ)πr3/r) = ρr2/3ε0.
The work to bring the charge of the next shell, dq = ρ4πr2 dr, in from infinity is

dW = dq V = (ρ4πr2 dr)(ρr2/3ε0) .
The total work and thus the total potential energy stored is

   
W = ρ24πr4 dr

3ε00

R

= 4πρ 2

3ε0
r4 dr

0

R

= 4πρ2R
5

15ε0
.

V

r
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CHAPTER  25   Capacitors and Dielectrics

Answers to Understanding the Concepts Questions

1. The fact that there are two ways of writing the units of permittivity changes nothing. The flexibility
may allow for ease in the cancellation of units in different equations, but this is purely a matter of
convenience.

2. Form a parallel-plate capacitor with the two parallel metal plates. Charge the capacitor by hooking
it up to the battery, and measure the potential difference V across the capacitor with the voltmeter.
The charge on the capacitor must satisfy Q = CV. Next, disconnect the battery from the capacitor, so
that Q cannot change anymore. Now insert the plastic to completely fill the air gap in between the two
metal plate. As a result the capacitance of the capacitor becomes C’ = κC, with κ the dielectric constant
of the plastic. Since Q cannot change, the voltage difference V’, which again can be measured by the
voltmeter, must satisfy Q = C’V’ = κCV’. Thus CV = κCV’, and κ = V/V’.

3. The reminder provides the proof: Consider a closed path which consists of a segment between the
plates, leading from one to the other, and a segment which closes the path outside of the plates. If
there is a voltage drop in the interior region, there must be a voltage rise outside that region. This
would be impossible if the electric field vanished outside.

4. By definition C = Q/V. If C = 0, then Q = 0, meaning that no charge can be stored on the capacitor
without introducing an infinite V.  This can happen, for example, as the cross-sectional area of a
parallel-plate capacitor approaches zero.

5. The reason the capacitance per unit length goes to zero is that in the limit under consideration, the
potential difference becomes infinitely large. It takes infinite work to concentrate an infinite amount of
charge along an infinitely long line.

6. An example is shown below.

        

C1 C2

C3

C4 C5

a b

7. A capacitor consists of two separate metal pieces that are insulated from one another. When a voltage
difference is applied across the two metal pieces, one piece is charged to + Q while the other is charged
to – Q. The net charge on the entire capacitor, including both metal pieces, is therefore always zero.

8. The fact that unlike charges attract and like charges repel forces the dielectric constant to be larger
than or equal to unity.
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9. Since the plates are disconnected from the battery Q cannot change, and neither can the electric field E
in between the plates (as it is proportional to the surface charge density on each plate). If the two
plates are pushed closer together, the potential difference between them, V = Ed, must therefore
decrease along with d, the plate separation). Thus C = Q/V must increase. (This is also clear from the
expression for the capacitance of the parallel-plate capacitor). Meanwhile, the electrostatic energy
store in the capacitor, Q2/2C, must decrease as Q is fixed whiled C increases.  This is also understood
from the fact that, while the energy density in between the two plates remains the same (as it is
proportional to E2, which does not change), the volume of the region in between the two plates
decreases.

10. When V is held fixed, Q is proportional to C. When the plates are pushed together, C increases, and so
must Q. Another way to see this is to note that if the potential difference between the plates is fixed as
the distance between the plates decreases, then the electric field must grow. This can only happen if
the surface charge density, and thus the total charge, grows. What about energy? For fixed V, the
energy is proportional to C (or Q). Thus pushing the plates together increases the energy, and positive
work must be done to push the plates together. Alternatively, note that the energy is proportional to E2

times the interior volume. The volume decreases as the distance between the plates decreases, but the
electric field grows in the same way. Thus E2 grows quadratically with the separation, and the total
energy is proportional to the separation.

11. The capacitance of a spherical capacitor is proportional to its radius, which is fixed if the surface area
A is fixed. There is not much we can do to adjust its capacitance. If we form a parallel-plate capacitor or
a concentric-cylinder capacitor, then theoretically C can be made arbitrarily large by making the
separation between the two metal pieces arbitrarily small. Note, however, that as the separation
between the two concentric cylinders become very small, the capacitance of the concentric-cylinder
arrangement approaches that of the parallel-plate capacitor (for the same plate area). So either of
them can be used to make a capacitor of large capacitance by reducing the plate separation.

12. The two plates of a large charged capacitor carry charges Q and – Q; these charges may be large. When
a wire connects the plates the charge will flow through the wire, generally in a very short time. This
could be dangerous if the person making the connection is careless and allows some of the charge to flow
through him or her. More generally, a large amount of energy has been stored in the capacitor and is
dissipated when the charges flow out. It is always a potential danger when a large amount of energy is
dissipated over a short time interval.

13. Consider a pair of plates carrying charges Q and – Q, respectively. Without the fringe effect, the
electric filed would abruptly reduce to zero at the edge of the plates. The fringe effect causes the
electric field to “leak” outside. Since the total electric flux depends on the charge on each plate and
cannot change, the electric field inside must be somewhat diluted as a result. Therefore, for the same Q,
the potential difference V between the two plates is weaker due to fringe effect, and the capacitance,
C = Q/V, increases as a result.

14. Two oppositely charged nonconductors will give rise to an electric field between them, with the field
lines going from the positive to the negative charges. This configuration will store electrical energy and
act in that sense just like a capacitor. The difficulty is that it is hard to put a large charge on
insulators, and it is also hard to discharge them. That is why conductors are much more useful.

15. According to the calculation in Example 25-5, the battery contains some 600 million times the energy it
takes to charge up a single capacitor. So it can certainly be used to charge more than one of them. In fact,
it would only take 1/600,000 of the energy of the battery to charge 1000 such capacitors.

16. If the plates are not shorted, they could accumulate charges and produce a voltage across them, and
that can be hazardous should your candle such a capacitor improperly and it gets discharged by driving
a current through your body.
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17. The question is whether the vacuum can be polarized; that is, whether positive and negative charges
can be separated from it. In terms of what we know, there are no charges in the vacuum, and therefore
an electric field applied to it will not induce a charge separation. When you study quantum mechanics
you will learn that the full answer to this question is quite different from the answer given here.

18. The air-filled capacitors are usually operated at a high frequency, i.e., they are hooked up to a
rapidly alternating voltage source that quickly charges and discharges the capacitor, so the slow
leakage of charges through the air gap does not present a significant problem.
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Solutions to Problems

1. (a ) For a parallel-plate capacitor, we have
C = ε0A/d

    = (8.85 × 10–12 F/m)(50 × 10– 4 m2)/(1 × 10– 3 m) = 4.4 × 10–11 F = 44 pF.
(b) For a sphere, we have

C = 4πε0R;
4.4 × 10–11 F = 4π(8.85 × 10–12 F/m)R, which gives R = 0.40 m = 40 cm.

2. For a coaxial cable, we have
C = L2πε0/ln(R2/R1)
    = (1.0 × 103 m)2π(8.85 × 10–12 F/m)/ln[(1.2 cm)/(0.8 cm)] = 1.4 × 10– 7 F  = 0.14 µF.

3. From V = Q/C, we have
(a) V = (4 µC)/(4 µF) = 1 V.
(b) V = (10 µC)/(4 µF) = 2.5 V.
(c) V = (1 × 10– 3 C)/(4 × 10– 6 F) = 250 V.

4. From Q = CV, we have
(a) Q = (1 µF)(2 V) =  2 µC.
(b) Q = (1 µF)(12 V) = 12 µC.

5. For a parallel-plate capacitor, we have
C = Q/V = ε0A/d;
(2 × 10– 6 C)/(3000 V) = (8.85 × 10–12 F/m)(2.5 × 10– 2 m2)/d, which gives   d = 3.3 × 10– 4 m = 0.33 mm.

Because V is the maximum of the power supply, this is the maximum separation.  Note that
E = V/d = (3000 V)/(3.3 × 10– 4 m) = 9 × 106 V/m,

which is greater than the dielectric strength of air; the plates must be evacuated.

6. For a coaxial cable, we have
C = L2πε0/ln(R2/R1)
    = (1.8 m)2π(8.85 × 10–12 F/m)/ln[(1.5 cm)/(1.0 cm)] = 2.5 × 10–10 F  = 0.25 nF.

7. Because the potential from the outer conductor is constant inside, the potential difference between the
two conductors is due to the inner conductor, which is equivalent to a point charge:

V = (Q/4πε0)[(1/r) – (1/R)], so the capacitance is
C = Q/V = 4πε0rR/(R – r).

(a ) When r is finite and R → ∞, we have
C → 4πε0r , which is the capacitance of the inner sphere.

(b) When (R – r) <<  r, we have R → r, so
C → 4πε0r2/(R – r) = ε0A/d , which is the capacitance of parallel plates with separation d.

8. From Problem 7, we have
C = 4πε0rR/(R – r)   and   V = Q/C = Q(R – r)/4πε0rR;
V = (1.4 × 10– 7 C)(15 × 10– 2 m  –  3.0 × 10– 2 m)/[4π(8.85 × 10–12 F/m)(3.0 × 10– 2 m)(15 × 10– 2 m)]
     = 3.4 × 104 V = 34 kV.
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9. For a parallel-plate capacitor, we have
C = q/V = ε0A/d;
d = ε0AV/q = (8.85 × 10–12 F/m)(4.0 × 10– 2 m2)[50.0 mV + (0.10 mV/s)t](10– 3 V/mV)/(4.0 × 10– 8 C)

    =  (4.43 × 10– 7 m) + (8.85 × 10–10 m/s)t .

10. For a parallel-plate capacitor, we have
E = σ/ε0 = V/d;
σ = ε0V/d

    = (8.85 × 10–12 F/m)(3V)/(0.3 × 10– 3 m) = 8.9 × 10– 8 C/m2.
The total charge on each plate is

Q = σA = (8.9 × 10– 8 C/m2)(0.06 m)2 = 3.2 × 10–10 C = 0.3 nC.

11. When the capacitor is isolated, the charge must be constant, so we have
Q = CminVmax = CmaxVmin;
Vmax = (Cmax/Cmin)Vmin

     = [(0.2 µF)/(0.01 µF)](300 V) = 6 × 103 V =  6 kV.

12. (a ) The capacitance of the system is
C = Q/V
    = (900 C)/(90 × 106 V) = 10 × 10– 6 F =10 µF.

(b) The energy stored in the system is
U = !QV
     = !(900 C)(90 × 106 V) = 4.1 × 101 0 J .

13. The energy stored in the capacitor is
U = !QV = !(0.068 C)(2900 V) = 99 J .

14. The energy stored in the capacitor is
U = !CV2 = !(0.7 pF)(2 V)2 = 0.98 pJ =  1 pJ .

15. We find the capacitance from the energy stored in the capacitor:
U = !CV2;
27 J = !C(300 V)2, which gives C = 6.0 × 10– 4 F = 600 µF.

16. For a sphere, we have C = 4πε0R, so the energy stored is
U = !Q2/C = !Q2/4πε0R

     = !(3.0 × 10– 5 C)2/4π(8.85 × 10–12 F/m)(35 × 10– 2 m) =  12 J .

17 . (a ) For a coaxial cable, we have
C = L2πε0/ln(b/a)

    = (10 m)2π(8.85 × 10–12 F/m)/ln[(8 mm)/(3 mm)] =  5.67 × 10–10 F.
(b) The energy stored in 10 m of cable is

U1 = !CV2

       = !(5.67 × 10–10 F)(103 V)2 = 2.83 × 10– 4 J .
Because the capacitance is directly proportional to the length, the energy stored in 1 km of cable is

U2 = [(103 m)/(10 m)]U1 =  2.83 × 10– 2 J .
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18. From Problem 7, we have C = 4πε0rR/(R – r) so the stored energy is
U  = !Q2/C = !Q2(R – r)/4πε0rR

      = !(6.0 × 10– 8 C)2 (12 cm – 4 cm)(10– 2 m/cm)/[4π(8.85 × 10–12 F/m)(12 cm)(4 cm)(10– 2 m/cm)2]
      =  2.7× 10– 4 J = 0.27 mJ.

19. (a ) When the plates are pulled apart, the charge does not change, while both the capacitance and
the potential difference will change.  The initial capacitance and charge are

C0 = ε0A/d0 ;   Q0 = C0V0 = ε0A V0/d0 = Q.
If we express the energy stored in the capacitor as

U = !Q2/C = !Q2d/ε0A ,
the change in stored energy is

∆U = !(Q0
2/ε0A )(d1 – d0) = (ε0A V0

2/2d0
2)(d1 – d0) .

(b) Because the external force is the only interaction with the capacitor, we have
W F = ∆U =  (ε0A V0

2/2d0
2)(d1 – d0) .

(c) If the plates stay connected to the battery, the potential difference does not change, while both
the charge and capacitance will change.  The change in stored energy is

∆U = !V0
2(C – C0) = (ε0A V0

2/2)[(1/d1) – (1/d0)] = (ε0A V0
2/2d1d0)(d0 – d1) .

(d) Even though there must still be work done by the external force to separate the opposite
charges on the plates, the energy stored in the capacitor decreases (d0 < d1).  The charge on the
plates has decreased and energy has been stored in the battery.

20. The energy stored in the electric field is
U1 = !ε0E2 (volume)1

 = !(8.85 × 10–12 F/m)(1.25 × 105 V/m)2(1 m3) =  6.91 × 10– 2 J .
U2 = !ε0E2 (volume)2

 = !(8.85 × 10–12 F/m)(1.25 × 105 V/m)2(103 m)3 = 6.91 × 107 J .

21. The energy density around the long wire is
u = !ε0E2 = !ε0(λ/2πε0r)2 = λ2/8π2ε0r2 .

22. For a sphere, we have C = 4πε0R.  The energy stored in the electric field is the energy stored in the
capacitor:

U  = !CV2 = !(4πε0R)V2 = 2πε0RV2

     = 2π(8.85 × 10–12 F/m)(0.75 m)(2.0 × 104 V)2 = 1.7× 10– 2 J =  17 mJ.

23. Because the cube is small compared to the distance from the point charge, we approximate the field in
the cube from the point charge as constant:

Eav = (1/4πε0)(q/r2) = (9 × 109 m/F)[(5 × 10– 4 C)/(1 m)2] = 45 × 105 V/m;
U  = !ε0Eav

2L3 = !ε0[(1/4πε0)(q/r2)]2L3 = (1/4πε0)q2L3/8πr4

      = (9 × 109 N · m2/C2)(5 × 10– 4 C)2(5 × 10– 2 m)3/[8π(1 m)4]
      = 1.1 × 10– 2 J .

24. For the energy density of the uniform field we have
u = !ε0E2 = !ε0(V/d)2;
10– 6 J/m3 = !(8.85 × 10–12 C2/N · m2)V2/(1 × 10– 2 m)2, which gives
V = 48 V.
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25 . For a conducting sphere, we have
V = (1/4πε0)(q/r):
8.3 × 103 V = (9 × 109 N · m2/C2)q/(18 × 10– 2 m), which gives
q = 1.7 × 10– 7 C.

The energy density outside the sphere is
u = !ε0E2 = !ε0[(1/4πε0)(q/r2)]2

   = !(8.85 × 10–12 C2/N · m2)[(9 × 109 N · m2/C2)(1.7 × 10– 7 C)/r2]2

   =  1.0 × 10– 5/r4 J/m3, with  r in m.
Because there is no field inside the sphere, we find the total energy in the electric field by adding the
energies in spherical shells with radius r and thickness dr:

   
U = 1.0 × 10–5 J·m

r4 4πr2 dr
R

∞

= 4.0π ×10–5 J·m dr
r2

R

∞

= 4.0π × 10–5 J·m – 1
r R

∞

= 4.0π × 10–5 J·m – 1
∞ + 1

R
= 4.0π × 10–5 J· m – 0 + 1

R
=

4.0π × 10–5 J·m
0.18 m = 7.0 ×10–4 J.

Note that this is !qV.

26. Because the sphere is conducting, there is no field inside.  The field outside is
Eoutside = Q/4πε0r2.

Using the technique of Problem 25, we find the energy in the spherical region between R = 25 cm  and  r =
50 cm:

                     U =  ∫ (ε0/2)(Q/4πε0r2)24πr2dr
=  (Q2/8πε0) ∫ dr/r2

= (Q2/8πε0)(–1/r)
= (Q2/8πε0)(–1/r + 1/R)
=  [(6.0 × 10– 7 C)2/8π(8.85 × 10–12 F/m)][–1/(0.50 m) + 1/(0.25 m)]

                           =  3.2 × 10– 3 J  =  3.2 mJ.

27. (a ) For a coaxial cable, we have
C = L2πε0/ln(b/a)
    = (0.15 m)2π(8.85 × 10–12 F/m)/ln[(2 cm/0.02 cm)]
    = 1.8 × 10–12 F = 1.8 pF.

(b) The energy that recharges the tube is stored in the capacitor:
U  = !CV2 = !(1.8 × 10–12 F)(5 × 102 V)2 =  2.3 × 10– 7 J .

28. From Chapter 24, we have the electric field for a uniformly charged nonconducting sphere:
Einside = Qr/4πε0R3 and  Eoutside = Q/4πε0r2.

Using the technique of Problem 25, we find the energy in the spherical region of radius r = 0.25 m
                      U =  ∫ (ε0/2)(Qr/4πε0R3)24πr2dr + ∫ (ε0/2)(Q/4πε0r2)24πr2dr
                           =  (Q2/8πε0R6) ∫ r4 dr + (Q2/8πε0) ∫ dr/r2

= (Q2/8πε0R6)(r3/5) +(Q2/8πε0)(–1/r)
                           =  (Q2/8πε0)(1/5R – 1/r + 1/R)

= (Q2/8πε0)(6/5R – 1/r)
                           =  [(7.3 × 10– 6 C)2/8π(8.85 × 10–12 F/m)](1.2/0.07 – 1/0.25)
                           =  3.1 J .
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29. (a ) We find the electric field between two parallel plates from
E = V/d  = (1500 V)/(0.5 × 10– 2 m) =  3.00 × 105 V/m.

(b) In terms of the charge density on the plates, the field is E = σ/ε0 , which gives

Q = σA = ε0EA = (8.85 × 10–12 F/m)(3.00 × 105 V/m)(400 × 10– 4 m2) = 1.06 × 10– 7 C.
(c) We have to remember that the field between the plates is produced by both plates, but the field

that one plate produces at the other is one-half of this.  The force exerted on one plate is
F = !QE = !(1.06 × 10– 7 C)(3.00 × 105 V/m) = 1.59 × 10– 2 N.

(d) When the plates are pulled apart, the charge does not change, while both the capacitance and
the potential difference will change.  If we express the energy stored in the capacitor as

U = !Q2/C = !Q2d/ε0A ,
the change in stored energy is

∆U = !(Q2/ε0A )(d2 – d1)
        = ![(1.06 × 10– 7 C)2/(8.85 × 10–12 C2/N · m2)(400 × 10– 4 m2)](0.20)(0.5 × 10– 2 m) = 1.59 × 10– 5 J.

To pull the plates apart requires a force to balance the attractive force from part (c).
The work done by this force is

W = F ∆d = (1.59 × 10– 2 N)(0.2)(0.5 × 10– 2 m) = 1.59 × 10– 5 J , consistent with part (c).

30. (a ) The electric field outside a charged sphere is that of a point charge:
E = e/4πε0r2,  r > R .

(b) We can use the result of Problem 26, with a → ∞, to find the energy stored in the electric field:
U = e2/8πε0R.

We could also find the energy from
U = !eV = !e(e/4πε0R) = e2/8πε0R

     = (1.6 × 10–19 C)2/8π(8.85 × 10–12 F/m)R = (1.15 × 10–28 J · m)/R .
(c) If the energy stored in the electric field is the rest energy, we have

e 2/8πε0R = mc2;
(1.6 × 10–19 C)2/8π(8.85 × 10–12 C2/N · m2)R = (0.9 × 10–30 kg)(3 × 108 m/s)2, which gives
R = 1.4 × 10–15 m.

31. For the two combinations we have
Cp = C1 + C2;   6.5 µF = C1 + C2 ,  and
1/Cs = 1/C1 + 1/C2   or   Cs = C1C2/(C1 + C2) = C1C2/Cp ;   1.4 µF = C1C2/(6.5 µF).

When we combine these two equations, we get a quadratic equation for C1:
C1

2 – (6.5 µF)C1 + 9.1 µF2 = 0.
The two solutions are C1 = 2.04 µF and 4.46 µF.  Thus the two capacitors are  2.04 µF,   4.46 µF.

32. The voltage must be the same across both the top and bottom sections, so we have
E1 = V/¬1 = σ1/ε0 ,

which gives the charge on the top section: Q1 = ε0(V/¬1)A1;
E2 = V/¬2 = σ2/ε0 ,

which gives the charge on the bottom section: Q2 = ε0(V/¬2)A2.
The areas are equal, A1 = A2 = A/2, and the total charge on the capacitor is

Q = Q1 + Q2 = ε0V(A1/¬1 + A2/¬2)
     = ε0V(A/2)(1/¬1 + 1/¬2) = ε0VA(¬1 + ¬2)/2¬1¬2.

From the  definition of capacitance, we have
C = Q/V = ε0A(¬1 + ¬2)/2¬1¬2 .

This is the equivalent capacitance for 2 capacitors in parallel:
C = (ε0A/2¬1) + (ε0A/2¬2) =  C1 + C2.

¬1

V

¬2



Fishbane, Gasiorowicz, and Thornton

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 25-9

33. From the redrawn circuit, we see that C3 and C4 are in series.
We find their equivalent capacitance from

1/C5 = 1/C3  +  1/C4  = 1/(2 µF) +  1/(5 µF), which gives C5 = 1.43 µF.
We find the equivalent capacitance of C2 and C5 ,
which are in parallel:

C6 = C2 + C5 = 4 µF + 1.43 µF = 5.43 µF.
Finally, we find the equivalent capacitance of C1 and C6 ,
which are in series:

1/Cequ = 1/C1  +  1/C6 = 1/(3 µF) + 1/(5.43 µF),
which gives Cequ = 1.93 µF.

C1

V C2

C3

C4

C1

V C2 C5 C6

C1

V Cequ
V

34. When the uncharged plate is placed between the two charged plates, charges will separate so that
there is a charge + Q on the side facing the negative plate and a charge – Q on the side facing the
positive plate.  Thus we have two capacitors in series, with an equivalent capacitance:

1/C = 1/C1  +  1/C2  = 1/(ε0A/x) + 1/[ε0A/(D – x – d)] = (x + D – x – d)/ε0A, which gives
C = ε0A/(D – d), independent of x .

Note that this is a parallel-plate capacitor with separation D – d.

35. Because the potential from the outer conductor is constant inside,
the potential difference between the two conductors is due to the
inner conductor, which is equivalent to a point charge:

V = (Q/4πε0)(1/r – 1/R), so the capacitance is
C = Q/V = 4πε0rR/(R – r)
    = 4π(8.85 × 10–12 F/m)(3 × 10– 3 m)(12 × 10– 3 m)/

[(12 – 3) × 10– 3 m]
    = 4.5 × 10–13 F = 0.45 pF.

When a wire connects the two spheres, they must be at the same
potential and all the charge will be on the outer sphere.  The
potential of the charged outer sphere is

V = Q/4πε0R, so the capacitance is
C = Q/V = 4πε0R

    = 4π(8.85 × 10–12 F/m)(12 × 10– 3 m)
    = 1.33 × 10–12 F = 1.33 pF.

36. From the circuit, we see that C4 and C5 are in parallel,
with an equivalent capacitance

C6 = C4 + C5 = 18 µF + 18 µF = 36 µF.
We now have four capacitors in series:
1/Cequ = 1/C1  +  1/C2  +  1/C3  +  1/C6

                = 1/(18 µF) +  1/(18 µF) + 1/(18 µF) + 1/(36 µF),
which gives

Cequ = 5.1 µF.

+
– V

R

r

Wire

D
istant cond

uctor

+
– V

(a)

(b)

V

C2

C3

C4
C1

C5

V

C2

C3

C1

C6
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37 . (a ) From the circuit, we see that C2 and C5 are in series
and find their equivalent capacitance from

1/C6 = 1/C2 + 1/C5

   = 1/(2 µF) + 1/(5 µF), which gives
C6 = 1.43 µF.

From the new circuit, we see that C1 and C6 are in parallel,
with an equivalent capacitance

C7 = C1 + C6 = 1 µF + 1.43 µF = 2.43 µF.
From the new circuit, we see that C3 and C7 are in series
and find their equivalent capacitance from

1/Cequ = 1/C3 + 1/C7

      = 1/(3 µF) + 1/(2.43 µF), which gives
Cequ = 1.34 µF.

(b) The charge on the equivalent capacitor is also the
charge on C3 and C7:

Qequ = Q3 = Q7 = CequVab = (1.34 µF)(300 V) = 402 µC.
We find the potential difference between c and b from

Vcb = Q7/C7 = (402 µC)/(2.43 µF) = 165 V.
The charge on C6 is also the charge on C2 and C5:

Q6 = Q2 = Q5 = C6Vcb = (1.43 µF)(165 V) = 237 µC.
The charge on C1 is

Q1 = C1Vcb = (1 µF)(165 V) = 165 µC.
Because point b is at the higher potential, the charges are
as shown in the diagram.

38. Although there are no apparent series or parallel
combinations in the circuit that can be reduced, we
use symmetry to simplify the circuit.  The top and bottom
paths from a to b are equivalent, so we have

Vc = Vd ,
which means there is no potential difference across
and no charge on the 5C capacitor.  The circuit will
not change if we replace the 5C capacitor with a wire.
The left and right sides have two capacitors in parallel,
with equivalent capacitance

C1 = C + C = 2C.
We combine these two capacitors in series to find the
equivalent capacitance of the circuit:

1/Cequ = 1/2C + 1/2C, which gives
Cequ = C .

C2

C3

C1

C5

a bc

C6

C3

C1

a c b

Cequ
b

C3 C7
a a bc

a bc

237 µC

165 µC

402 µC
+–

+– +–

+–

237 µC

C

C1

C C

C

5C
a b

c

d

C

C C

C

a b

c

d

a b
C1
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39. To find the equivalent capacitance between a and b,
we redraw the circuit, and see that there are two
capacitors in series in the right branch:

1/C1 = 1/C + 1/C, which gives C1 = !C.
For the two capacitors in parallel between d and b we have

C2 = C1 + C = !C + C = *C.
For the two capacitors in series between a and b we have

1/C3 = 1/C + 1/C2, which gives C3 = 0.6C.
For the equivalent capacitance, we have

Cequ,ab = C + C3 = C + 0.6C = 1.6C .
To find the equivalent capacitance between a and c, we
redraw the circuit, and use symmetry to simplify the circuit.
The top and bottom paths from a to c are equivalent, so we
have

Vb = Vd ,
which means there is no potential difference across and no
charge on the middle capacitor.  The circuit will not change if
we remove it.
The top and bottom branches have two capacitors in series:

1/C4 = 1/C + 1/C, which gives C4 = !C.
We combine these two capacitors in parallel to find the
equivalent capacitance of the circuit:

Cequ,ac = C4 + C4 = !C + !C =  C.
To find the equivalent capacitance between b  and d, we
redraw the circuit, and see that the top and bottom paths
have two capacitors in series:

1/C5 = 1/C + 1/C, which gives C5 = !C.
We now have three capacitors in parallel,
with equivalent capacitance

Cequ,bd = C5 + C5 + C = !C + !C + C =  2C .

40. (a ) For capacitor C1 , we have
U1 = !q1

2/C1 = !(4 µC)2/(175 µF) = 0.046 µJ.
For capacitor C2 , we have

U2 = !C2V2
2 = !(18 µF)(3 V)2 = 81 µJ.

The total energy stored in the two capacitors is
U = U1 + U2 = 0.046 µJ + 81 µJ = 81 µJ .

(b) When the negatively charged plate of C1 is connected to the positively charged plate of C2  we
have a single equivalent capacitor, with

qnet = |q2 – q1| = |(18 µF)(3 V) – 4 µC |  = 50 µC,
Cequ = C1 + C2   = 175 µF + 18 µF  =  193 µF, and
V = qnet / Cequ  =  50 µC/193 µF = 0.26 V.

         The total energy stored in the system becomes
  U = !qnet

2/Cequ = !(50 µC)2/(193 µF)2 = 6.5 µJ .

C1C

a b

c

d

C

C

CC
a b

d C
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a b

d
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c
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b
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41. (a ) We find the capacitance C2 from
C2 = Q2/V2 = (25 µC)/(5 V) =  5.0 µF.

(b) Because Q1 = Q2 , the capacitors can be considered to be in series.  The charge on the equivalent
capacitor is

Q = Q1 = Q2 =  25 µC.

42. Because the equivalent capacitance for a parallel combination is the sum, we see that there must be
some series combination as well.  Because the required result of 4.968 µF is greater than 4 µF, we try the
4-µF capacitor in parallel with a series combination of the others.   The equivalent capacitance of  some
of the combinations are

2-µF & 3-µF:  (2 µF)(3 µF)/(2 µF + 3 µF) = 1.2 µF;
2-µF & 5-µF:  (2 µF)(5 µF)/(2 µF + 5 µF) = 1.4 µF;
2-µF & 3-µF & 5-µF:  (1.2 µF)(5 µF)/(1.2 µF + 5 µF) = 0.97 µF.

We get the desired result by putting the 4-µF capacitor in parallel with a series combination of the
2-µF, 3-µF, and 5-µF capacitors.

43. Because the charge is constant, we have
Q = CteflonV teflon = CplexiglasVplexiglas ,   or   Vplexiglas/Vteflon = Cteflon/Cplexiglas = κteflon/κplexiglas ;
Vplexiglas/(600 V) = 2.1/3.4, which gives Vplexiglas = 370 V.

44. We find the dielectric constant from
κ = C/C0 = (Q/V)/(Q/V0) = V0/V = (4 V)/(3.6 V) = 1.1V.

45. For the same energy stored at the same potential difference, we have
U = !CV2 = !(κε0A/d)V2;
4 × 106 J = ![(3)(8.85 × 10–12 C2/N · m2)A/(1 × 10– 3 m)](12 V)2, which gives
A = 2.1 × 101 2 m2 .

46. (a ) Using the results from Problem 17, we have
C = L2πκε0/ln(b/a) = κC0 = (2.5)(5.67 × 10–10 F) = 1.42 × 10– 9 F.

(b) The energy stored in 10 m of cable is
U1 = !CV2 = !κC0V2 = κU0 = (2.5)(2.83 × 10– 4 J) =  7.08 × 10– 4 J .

Because the capacitance is directly proportional to the length, the energy stored in 1 km of cable is
U2 = [(103 m)/(10 m)]U1 =  7.08 × 10– 2 J .

47. (a ) The area of the parallel-pate capacitor is                             (c)
A = (0.20 m)(0.15 m) = 0.030 m2, and its plate
Separation is d = 7.7 mm/100  = 7.7 × 10– 5 m.
Its capacitance is then

C = κε0A/d

    = (2.9)(8.85 × 10–12 F/m)(0.030 m2)/(7.7 × 10– 5 m)
    = 1.0 × 10– 8 F = 10 nF.

(b)  Since C is proportional to κ, the actual value of κ is 
κ = (4.6 nF/ 10 nF)(2.9) = 1.3 .

C (nF)

N 

10

5

0 5 10
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48. With A = 2 cm2  =  2 × 10– 4 m2,  d = 0.1 nm  = 1 × 10–10 m, and κ = 10, the capacitance is
C = κε0A/d = (10)(8.85 × 10–12 F/m)(2 × 10– 4 m2)/(1 × 10–10 m) = 2 × 10– 4 F.

49. The capacitance of an isolated sphere in air is C0 = 4πε0R.  When it is embedded in a dielectric, we
have

C = κC0 , so the change is
C – C0 = (κ – 1)C0 = (κ – 1)4πε0R .

The sign of the induced charge on the surface of the dielectric will be opposite to that of the original
charge.  If E0 = σ/ε0 is the original electric field just outside the sphere, we have

E = E0/κ = E0 + Eind;
σ/κε0 = σ/ε0 + σind/ε0, which gives      σind/σ = (κ – 1)/κ .

50. We find the initial separation from
E0 = V/d;
0.90 × 106 V/m = (12 × 103 V)/d, which gives d = 0.013 m.

Because the capacitance does not change, we have
C = ε0A/d = κε0A/d′, which gives
d′= κd = 1.5(0.013 m) = 0.020 m.

51. If we write the energies as U0 = !q0
2/C0 and U = !q2/C, the ratio is

U/U0 = (q/q0)2(C0/C) = (q/q0)2(1/κ);
3 = (q/q0)2(1/1.8), which gives q = 2.3q0 .

52. (a ) For a coaxial cable, we have
C = L2πκε0/ln(b/a)

    = (100 m)(2π)(2.2)(8.85 × 10–12 F/m)/ln[(5.0 mm)/(3.5 mm)]  =  3.4× 10– 8 F.
(b) The charge on the inner (and the outer) conductor is

Q = CV
     = (3.4 × 10– 8 F)(5.0 × 102 V) = 1.7 × 10– 5 C.

The energy stored is
U = !CV2

     = !(3.4 × 10– 8 F)(5.0 × 102 V)2 = 4.3 × 10– 3 J .

53. We can consider the system to be two capacitors in series:
1/C = 1/C1 +  1/C2

  =  (D�– d)/ε0A + d/κε0A
  = (D –  d +  d/κ)]/ε0A, which gives

C = κε0A/[d + κ(D – d)] .

54. From Problem 53, we have
C = κε0A/[d + κ(D – d)].

The charge on the plates is
Q = CV = κε0AV/[d + κ(D – d)], so the electric field in the empty space is
E0 = σ/ε0 = Q/ε0A = κV/[(d + κ(D – d)]

      = (1.8)(600 V)/[0.6 × 10– 2 m + (1.8)(1.6 × 10– 2 m –  0.6 × 10– 2 m)] = 4.5 × 104 V/m.
The electric field in the dielectric is

E = E0/κ = (4.5 × 104 V/m)/1.8 = 2.5 × 104 V/m.
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55 . The free charge on the capacitor is
Q = CV = (κε0A/d)V = κε0AV/d

     = κ(8.85 × 10–12 F/m)(10 × 10– 4 m2)(300 V)/(5 × 10– 3 m) = 5.3 × 10–10κ C.
For the materials, we have

air, κ = 1;     Q = 5.3 × 10–10 C;
paper, κ = 3.7;        Q = 2.0 × 10– 9 C;
neoprene, κ = 6.7;        Q = 3.6 × 10– 9 C;
Bakelite, κ = 4.9;       Q = 2.6 × 10– 9 C;
strontium titanate, κ = 332;      Q = 1.8 × 10– 7 C.

56. Using the dielectric strength of plexiglas, we find the separation of the plates:
E = V/d;
d = Vmax/Emax = (6 × 103 V)/(2.8 × 106 V/m) = 2.14 × 10– 3 m.

When the plexiglas is removed, the capacitance is
C0 = ε0A/d

= (8.85 × 10–12 F/m)(0.80 × 10– 4 m2)/(2.14 × 10– 3 m) = 3.3× 10–13 F.
The maximum voltage with air between the plates is

V0 = E0maxd

= (3 × 106 V/m)(2.14 × 10– 3 m) = 6.4 × 103 V.
The maximum charge the plates can hold now is

Q0 = C0V0

= (3.3 × 10–13 C)(6.4 × 103 V) = 2.1 × 10– 9 C.

57. Using the result of Problem 35, we know that the capacitance is
C = κC0 = κ4πε0r1r2/(r2 – r1) .

With air between the shells, the energy is
U0 = !Q2/C0.

When the dielectric is added, the charge does not change, so the energy is
U = !Q2/C = !Q2/κC0.

The change in energy is
U – U0 = !(Q2/C0)(1/κ – 1) = !(Q2/κC0)(1 – κ) = (1 – κ)Q2/2C  (a decrease).

58. Because D <<  L, we can ignore fringing fields.  The
potential difference must be the same on each half
of the space, so we can treat the system as two
capacitors in parallel:

C = C1 + C2 = κ0ε0(!L2)/d + κ1ε0(!L2)/d

    = (ε0!L2/d)(κ0 + κ1) = !(κ0 + κ1)(ε0L2/d) .

59. From the diagram, we see that the arrangement is
equivalent to 9 capacitors in parallel:

C = 9C1 = 9(ε0A/d)
    = 9(8.85 × 10–12 F/m)(6.0 × 10– 2 m)(8.0 × 10– 2 m)/(1.2 × 10– 3 m)
    = 3.2 × 10–10 F =  0.32 nF.

If the region is filled with a dielectric, we have
C′= κC = 2.8(0.32 nF) = 0.90 nF.

60. We find the induced charge from
Qind = Q(1 –  1/κ) = (18 µC)(1 –  1/4.5) = 14 µC.

D κ0 κ1

V

d

+
–



Fishbane, Gasiorowicz, and Thornton

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 25-15

61. We choose a cylinder with one end inside the conducting plate and
the other end in the dielectric for a Gaussian surface.  Because
there is no field inside the plate and the field is parallel to the
sides, the only part of the cylinder with flux through it is the end
in the dielectric:

Ç      
r 
E ⋅ d

r 
A  = ∫∫ E dA = Qencl/ε0 ;

EA = (σ – σind)A/ε0 , which gives
E = E0 – Eind = σ/ε0  –  σind/ε0 .

Because E0 = σ/ε0 , we have
Eind = σind/ε0.

62. We find the induced surface charge density from
σind = σ  –   σ/κ  = σ (1 – 1/κ) = (κ – 1)(Q/L2κ) .

The induced surface charge is
Qind = σindL2 = (κ – 1)(Q/κ)

 = (3.5 – 1)(0.3 × 10– 6 C)/3.5 = 2.1 × 10– 7 C.
The field in the dielectric is

E = E0/κ = σ/κε0 = Q/L2κε0

    = (0.3 × 10– 6 C)/[(0.22 m)2(3.5)(8.85 × 10–12 C2/N · m2 )] = 2.2 × 105 V/m.
The energy stored in the capacitor is

U = !Q2/C = !Q2d/κε0L2

     = !(0.3 × 10– 6 C)2(1.8× 10– 3 m)/[(3.5)(8.85 × 10–12 C2/N · m2)(0.22 m)2] = 5.4 × 10– 5 J .

63. For a polar dielectric we have
κ = 1 + a/T,  so
C = κε0A/d = κC0 = (1 + a/T)C0.

With the given data we have
3.2 µF = (1 + a/296 K)C0   and   2.65 µF = (1 + a/360 K)C0 .

When we solve these two equations, we get
a = 8640 K  and  C0 = 0.106 µF.

At a temperature of 48°C, we have
C = (1 + 8640 K/321 K)(0.106 µF) = 2.96 µF.

64. The uncharged plate will be sucked in. The charges induced on the surfaces of the inserted plate will be
opposite to those on the charged plates.  If we consider one of the charged plates, the induced charge of
the opposite sign will be closer than the induced charge of the same sign and thus the force of attraction
will be greater than the force of repulsion. The same will be true for the other charged plate.

65. (a) Since the two capacitors are in series they must have the same charge:
q = C1V1 = C2V2 .

 Also, the sum of their voltages is V:
V = V1 + V2.

       Combine these two equations to obtain
V1 = C2V/(C1 + C2) ,   V2 = C1V/(C1 + C2) .

(b) Since
V1 = C2V/(C1 + C2) = (3 nF)V/(2 nF  + 3 nF) = 3V/5 < V1max = 10 V, we have  V < 17 V.  Also,
V2 = C1V/(C1 + C2) = (2 nF)V/(2 nF  + 3 nF) = 2V/5 < V2max = 30 V, we have  V < 75 V.

To satisfy both inequalities we must have V < 17 V. So Vmax = 17 V.
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66. (a) Two capacitors connected in parallel must have the same potential difference, so
V2 = V .

 (b) The single equivalent capacitor is still subject to the same voltage difference, V .
 (c) Since the voltage difference across the two capacitors is the same, and the maximum voltage

difference across C1 is 10 V, less than that across C2, the maximum voltage difference across the
combination is

Vmax = V1max = 10 V.

67. We take a radius R of 0.5 m for the sphere and a spark distance d of 0.5 cm.  Because the spark distance
is small, we assume the breakdown field is constant, so the required potential is V = Ed.  From the
potential of a sphere, we have

V = (1/4πε0)(Q/R) = Emaxd ;
(9 × 109 N · m2/C2)Q/(0.5 m) = (3 × 106 V/m)(0.5 × 10– 2 m), which gives Q  ̨ 10– 6 C.

68. (a ) Because a single potential is available, from Q = CV we see that the maximum charge will be
produced by the maximum capacitance.  For a parallel-plate capacitor, C = κε0A/d.  We need a
system with maximum area and minimum separation.  The minimum separation is 5 mm, and the
maximum area possible is 150 cm2.  (Note that if we make a number of smaller capacitors, they
will be connected in parallel to produce the maximum capacitance.  This is the same as a single
capacitor.)  The system consists of 2 aluminum plates of area 150 cm2, separated by 5 mm, with a
150 cm2 piece of Bakelite between the plates.  The designed capacitance is

C = κε0A/d

    = (4.9)(8.85 × 10–12 F/m)(150 × 10– 4 m2)/(5 × 10– 3 m) = 1.30 × 10–10 F.
The charge on the plates is

Q = CV  = (1.30 × 10–10 F)(1200 V) = 1.56 × 10– 7 C.
The energy stored is

U = !CV2  = !(1.30 × 10–10 F)(1200 V)2 = 9.37 × 10– 5 J .
(b) Because a single potential is available, from E = V/d we see that the maximum field will be

produced by the minimum separation.  The Bakelite is not needed to have this electric field, so
the system is the same, but with no Bakelite.  The electric field is

E0 = (1200 V)/(5 × 10– 3 m) = 2.4 × 105 V/m.

69. (a ) We find the equivalent capacitance for N capacitors in series from
1/Cseries = ∑(1/Ci) = N/C1 , which gives   Cseries = C1/N.

The energy stored is
Useries = !CseriesV

2 = !C1V2/N .
(b) We find the equivalent capacitance for N capacitors in parallel from

Cparallel = ∑Ci = NC1.
The energy stored is

Uparallel = !CparallelV
2 = !N C1V2 .

(c) The equivalent capacitance does not change, so we have
Useries = !CseriesV

2 = !Q2/Cseries = !Q2N/C1 ;

Uparallel = !Q2/Cparallel = !Q2/NC1 .
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70. (a ) Because there is no electric field within the metal plate, the system is two capacitors in series.
If we call the separation for one of them d1 = 1d/3, we find the equivalent capacitance from

1/Cmetal = 1/C1 + 1/C1 = d1/ε0A + d1/ε0A, which gives
Cmetal = ε0A/2d1 = 3ε0A/2d

    = 3(8.85 × 10–12 F/m)(0.28 m2)/2(1.5× 10– 2 m) = 2.5 × 10–10 F = 0.25 nF.
(b) Because there is no field within the metal, the surface charge density induced on the intermediate

plate is
σind = Q/A = Q/(0.28 m2) = 3.57Q C/m2.

(c) The original energy is
U1 = !Q2/C0 = Q2d/2ε0A .

The new energy is
U2 = !Q2/Cmetal = Q2d/3ε0A .

The ratio is
U2/U1 = 2/3   (a decrease).

(d) When a dielectric is inserted, the system is three capacitors in series.
We find the equivalent capacitance from

1/Cdielectric = 1/C1 + 1/C2 + 1/C3

     = d1/ε0A + d1/κε0A + d1/ε0A
     =  (2d1 + d1/κ)/ε0A = (2 + 1/κ) d1/ε0A , which gives

Cdielectric = (3ε0A/d)[κ/(2κ + 1)].
The ratio is

Cdielectric/Cmetal = 2κ/(2κ + 1) .

71.

We find the capacitance of the strip of the dielectric at x, with width dx, from
dC = κε0 dA/D = κε0L dx/D.

The strips that make up the capacitor are in parallel, so the equivalent capacitance is

     

   

C = dC = κε0L
D dx

0

L

= ε0 κ0 +
κ1 – κ0 x

L
L
D dx

0

L

= ε0L
D

κ0x +
κ1 – κ0 x 2

2L
0

L

= ε0L
D

κ0L +
κ1 – κ0 L2

2L
, which reduces to

C = !(κ0 + κ1)(ε0L2/d) .

72. Using the estimates given, we have
  C = Q/V
       ̨(102 C)/(108 V) ˛ 10– 6 F.

The energy stored in the capacitor is
U = !CV2 = !QV
     ˛ !(102 C)(108 V) ˛ 101 0 J .

D

κ = κ0 κ = κ1

0 L
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73 . We find the equivalent capacitance of the circuit.
B and D are in parallel:

C1 = CB + CD = 4.3 µF + 2.1 µF = 6.4 µF.
We now have three capacitors in series:

1/Cequ = 1/CA + 1/C1 + 1/CC

        = 1/(5.4 µF) + 1/(6.4 µF) + 1/(3.2 µF),
which gives Cequ = 1.53 µF.
We find the charge on the equivalent capacitor, which is
also the charge on each capacitor in series, from

Qequ = QA = Q1 = QC = CequVab

    = (1.53 µF)(3000 V) = 4.6 × 103 µC.
We find the potential differences from

VA = Vac = QA/CA = (4.6 × 103 µC)/(5.4 µF) =  8.5 × 102 V;

VB = VD = Vcd = Q1/C1 = (4.6 × 103 µC)/(6.4 µF) = 7.2 × 102 V;

VC = Vdb = QC/CC = (4.6 × 103 µC)/(3.2 µF) = 1.43 × 103 V.

74. (a ) We find the capacitance from
C0 = ε0A/d

      = (8.85 × 10–12 F/m)(0.40 m2)/(3.0 × 10– 3 m) = 1.2 × 10– 9 F.
The maximum voltage is

Vmax = Emaxd, so the maximum charge is

Qmax = C0Vmax = C0Emaxd = (1.2 × 10– 9 F)(2.7 × 106 V/m)(3.0 × 10– 3 m) = 9.7× 10– 6 C.
(b) Emax = Qmax/Cd = Qmax/κC0d

    = (9.7 × 10– 6 C)/(6.0)(1.2 × 10– 9 F)(3.0 × 10– 3 m) = 4.5× 105 V/m.

75. The energy stored in the capacitor is
U0 = !C0V0

2 = !(3.0 × 10– 6 F)(1500 V)2 = 3.4 J .
Because the source is disconnected, the charge on the capacitor does not change, and we have

C = κC0; V = V0/κ.
The energy stored after the dielectric is inserted is

U = !CV2 = !κC0(V0/κ)2 = (1/κ)(!C0V0
2) =  (1/κ)U0.

We find the work required to insert the dielectric from
W = ∆U = (1/κ – 1)U0

= (1/2.8 – 1)(3.4 J) = – 2.2 J .
The negative value means that the dielectric is drawn into the region between the plates.

76. We call the length of a plate L, so that A = L2.  We can treat
the system as two capacitors in parallel:

C = Cdielectric + Cair

     = κε0Lx/d + ε0L(L – x)/d
     = (ε0L2/d)[κ(x/L) + 1 –  x/L)]
     =  (ε0A/d)[1 + (κ – 1)x/A1/2].

The energy stored is
U = !CV2 = (ε0A V2/2d)[1 + (κ – 1)x/A1/2].

V
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77. We take a strip of the dielectric perpendicular to the y-axis,
with thickness ∆y, as a capacitor.  The capacitance of this strip is

Cy = κε0L2/∆y.
All of the strips from y = 0 to y = D are in series, so we find the total
capacitance from

1/C = ∑(1/Ci) = ∑(∆y/κε0A ) .
In the limit  ∆y → 0, this sum becomes an integral:

   
1
C

= dy
κε0L

2
0

D

= 1
ε0L2

dy

κ0 + κ1 – κ0 y/D
0

D

= D
ε0L

2
κ1 – κ0

ln κ0 + κ1 – κ0 y/D
0

D

= D
ε0L

2
κ1 – κ0

ln
κ0 + κ1 – κ0

κ0

= D
ε0L

2
κ1 – κ0

ln κ1
κ0

.

The capacitance is
C = (κ1 – κ0)ε0L2/[D ln(κ1/κ0)] .

78. For two capacitors in series, the equivalent capacitance is
Cequ, series = C1C2/(C1 + C2) .

If we subtract this from one of the capacitances, we have
Ci – Cequ, series = Ci

2/(C1 + C2) > 0.
Because we can combine a series arrangement successively as pairs, the equivalent capacitance for a
series combination is always less than any single capacitance. (Also see Problem 79.)
For capacitors in parallel, the equivalent capacitance is

Cequ, parallel = ∑Ci = 2µF + 4µF + 9µF = 15µF .
so the equivalent capacitance is always greater than any single capacitance.
Thus, we arrange the three capacitors in series for the smallest equivalent capacitance:

1/Cmin = 1/C1 + 1/C2 + 1/C3 = 1/(2µF) + 1/(4 µF) + 1/(9 µF), which gives Cmin = 1.2 µF.

79. We find the equivalent capacitance for a series arrangement from
   1

Cequ
= 1

Ci
Σ
i

.

If we multiply by the value of the jth capacitance, we get
   C j

Cequ
=

C j

Ci
Σ
i

= 1 +
C j

Ci
Σ
i ≠ j

.

Because the summation is positive, we have
Cj/Cequ > 1, for any value of j.

Thus the equivalent capacitance is less than any of the individual capacitances.

dy

y

D

0

κ1
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80. To distinguish the two capacitors, we label the one in which the dielectric is inserted A and the other
one B.  The two identical capacitors in series will be system 1, and the system with the dielectric will
be system 2.
For system 1:

We find the equivalent capacitance from
C1 = CA1CB/(CA1 + CB) = CC/(C + C) = !C.

The charge on the equivalent capacitance is the charge on
either capacitor:

Q1 = QA1 = QB1 = C1V = !CV.
The voltage drops are

VA1 = QA1/CA1 = (!CV)/C = !V;
VB1 = QB1/CB1 = (!CV)/C = !V.

The stored energy is
U1 = !C1V2 = #CV2.

For system 2:
We find the equivalent capacitance from

C2 = CA2CB/(CA2 + CB) = κCC/(κC + C) = [κ/(κ + 1)]C.
The charge on the equivalent capacitance is the charge on either capacitor:

Q2 = QA2 = QB2 = C2V = [κ/(κ + 1)]CV.
The voltage drops are

VA2 = QA2/CA2 = [κ/(κ + 1)]CV/κC = [1/(κ + 1)]V;
VB2 = QB2/CB2 = [κ/(κ + 1)]CV/C = [κ/(κ + 1)]V.

The stored energy is
U2 = !C2V2 = ![κ/(κ + 1)]CV2.

The changes are
∆U = ![κ/(κ + 1) – !] CV2 = [(κ – 1)/2(κ + 1)]!CV2 ;
∆QA = ∆QB = [κ/(κ + 1) – !] CV =  [(κ – 1)/2(κ + 1)]CV ;
∆VA = [1/(κ + 1) – !]V =  [(1 – κ)/2(κ + 1)]V ;
∆VB = [κ/(κ + 1) – !]V =  [(κ – 1)/2(κ + 1)]V .

Because κ > 1, the energy has increased.  This energy is supplied by the source as the additional charge
moves onto the plates.

A B

V

κ
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CHAPTER  26   Currents in Materials

Answers to Understanding the Concepts Questions

1. The current is a measurement of the rate at which charge passes. Since charge is conserved, the rate at
which electrons pass various points along a beam is the same no matter how the individual electrons in
it may have been accelerated; otherwise you would say that some charge has been lost or gained along
the way. In the part of the beam that has been sped up, the electrons have become more widely spaced.
In this way the rate of passage remains the same.

2. Power dissipation occurs when electrical energy is converted into thermal energy. Microscopically, this
is due to the collision between the drifting electrons with the lattice. Between successive collisions, an
electron is accelerated by the electric field and builds up a certain drift velocity. As a result of the
collision, the electron has lost all the “memory” of that drift velocity and has to start anew with zero
average velocity. The electrons give up part of their kinetic energies through collisions with the
lattice particles, which as a result oscillate faster on average, increasing the temperature. This is how
electrical energy is turned into heat. The microscopic picture does agree with the observed linear
relationship between voltage and current, as   

r 
J  =   σ

r 
E , where is the conductivity [see Eq. (26-25)], which

leads to V = IR.

3. The resistance is inversely proportional to the area, and for a fixed current the power dissipated, I2R is
therefore inversely proportional to the area. The thinner wire will get hotter.

4. Consider a certain segment of a wire, of length L, cross-sectional area A, and resistivity ρ. The power
consumed is P = I2R = I2(ρL/A), and the thermal energy generated over a time interval t is then Pt =
I2(ρL/A)t, which we equate to the energy needed to raise the temperature of the wire by ∆T:  Pt =
I2(ρL/A)t = cm∆T = c(ρ’AL) ∆T, where ρ‘ is the density of the wire and c is its specific heat. Solve for
∆T:     ∆T = I2(ρL/A)t/[c(ρ’AL)] = (I2t/A2)(ρ/cρ’). Thus

   ∆TAl/∆TBrass = (ρAl/ cAlρAl’)/(ρBrass/ cBrassρBrass’) = (ρAl/ρBrass)(ρBrass’/ρAl’)(cBrass/cAl)
      = (2.82/7)(8.9/2.7)(0.092/0.215) ≈ 0.6 < 1,

so    ∆TAl <  ∆TBrass. The brass wire would get hotter.

5. It follows from Eq. (26-9) that for constant current and area the drift velocity only depends inversely on
the density of free electrons. This is a characteristic of the material making up the conductor.

6. Imagine that the cylinder is made of N segments of equal length and equal cross-sectional area. Each
segment has the same resistance and they are in series. When a certain current flows through the
cylinder, each segment, with the same resistance, must have the same voltage drop (as V= IR). Thus
the voltage difference applied across the entire cylinder is divided evenly over each identical
segment, meaning that the voltage drops linearly over the length of the cylinder.

7. After the faucet is turned on, the water particles have to actually move from the faucet through the
entire hose before they can flow out of the hose, and that accounts for the tine delay. In a wire, there
are free electrons at every segment. The moment the power is switched on, an electric field is
established, and every free electron instantly experiences the force of the electric field and start to
drift. You don’t have to wait for an electron to traverse from one end of the wire to the other end before
a current is established. (In fact, the electrons drift incredibly slowly due to their frequent collisions
with the lattice, at only several millimeters per hour for a typical current –– so if you needed to wait
for the electrons to move through the wire, you’d have a real long wait!)
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8. In the free electron model, the temperature dependence of the resistivity [Eq. (26-25)] has to do with
the time between collisions between electrons and the obstacle –– fixed ions –– that give rise to the drag
force on the electrons. At very low temperatures the time between random collisions would increase;
however, the accelerating field would still be present and there would still be a current. Thus the free
electron model as it stands, with the accelerations due to the field as a small perturbation on the
random motion, would have to be replaced with a “pinball” model, in which the only motion is due to
the field and the electrons must “navigate,” through multiple collisions, the forest of fixed ions. There
would still be conduction even at T = 0 in this picture, whereas the free electron model would predict
none.

9. In principle, yes it does. As T increases, not only doe the resistivity change, but also the length as well
as the cross-sectional area of the wire increase. All these contribute to the temperature-dependency of
electrical resistance. We do not, however, expect the dimensional change to be a major factor, since the
fractional change in length and cross-sectional area is usually so small over a reasonable range of
temperature variation.

10. When a switch is thrown and charge flows, it is because there is an electric field in the wire. Free
charge in the wire –– mainly electrons –– will move, but the wire itself remains neutral, because as
many charges as leave a segment of wire from one end enter it from the other end.

11. The current in the wire is given by I = JA = neevA. As the electrons crowd to one side of the wire ne

increases, while the effective value of A decreases by the same factor. Thus I remains the same, as does
the resistance of the wire.

12. There is no electric field inside a conductor when there is equilibrium. When charges are flowing due to
a continuously applied potential we do not have equilibrium, and charges can flow inside the conductor.

13. According to Eq. (26-25), ρ = m/nee
2τ. Here m = 9.1 × 10–31 kg, e = 1.6 × 10–19 C, ne ≈ 1029 /m3 (see Example 26-

3), and τ ≈ 10–14 s. These data indeed yield ρ ≈ 10–8 Ω · m .

14. No. Here is an example in which the decomposition is generally not possible:

            

R1 R2

R3

R4 R5

a b

15. When the power P = VI becomes too large, there is too much power dissipated for the heat to be
conducted away in time, and melting of the resistor material occurs. Since generally the potential V is
held fixed, the current becomes too large if the resistance is too small.

16. The resistance R of the filament, along with the voltage V applied across it, determines the power
consumption of the light bulb: P = V2/R. Here R = ρL/A, so P = (V2/ρ)(A/L). For a certain power rating,
the ratio A/L must therefore be preserved. When choosing a certain diameter d (and, therefore, the
cross-sectional area A = πd2/4) of the filament, we must make sure that the corresponding length L of
the filament is reasonable so that it can be coil up to fit inside the light bulb.
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17. The resistance is proportional to the length of the resistor. This means that if two wires are tied
together, the resistance is the sum of the resistances of the individual wires. This is consistent with the
rule Req = R1 + R2 for two resistors in series.

18. The current in the wire is given by I = JA = neevA, which is proportional to the product of vA.  Even
though v2 < v1, we have A1 > A2. Moreover, v1A1 = v2A2, due to the continuity of flow of the charge
carriers, analogous to the equation of continuity for the flow of incompressible fluids. Thus I1 = I2.

19. The total potential difference between A and B is fixed, i.e., VAB = VAC + VCB = constant. If the switch is
closed then the overall resistance Req  between A and B is reduced, and the current flowing through bulb
1, I = VAB/Req,  must increase. So bulb 1 will be brighter with the switch closed. As for bulb 2, when the
switch is closed VAC , the potential difference across bulb 1,  increases (due to the increase in the current
that flows through it), so VCB must decrease. Thus bulb 2 becomes dimmer when the switch is closed.

20. As the diameter changes by a factor of 1/10 the cross-sectional area A changes by a factor of 1/100.
Meanwhile, the volume of the wire remains fixed, so as the area changes by a factor of 1/100 the length
L must change by a factor of 100. Overall, the resistance, which is proportional to L/A, must increase by
a factor of 100/(1/100) = 10 000, or 104.

21. The resistors are connected in parallel. If one more resistor is added in parallel, the equivalent
resistance is reduced, and the current, I = VAB/Req, would increase.

22. For a network of resistors consisting of several parallel branches, the equivalent resistance is lower
than that of the branch with the least resistance. So, to minimize Req, we can put the 1-Ω resistor in the
lower branch and the other two in series in the upper branch. Then Req < 1 Ω. If we wish to maximize
Req, then put the largest (4-Ω) resistor in the lower branch. You can easily verify these results with a
straightforward calculation: Req = [R1

–1 + (R2 + R3)–1]–1 = R1(R2 + R3)/(R1 + R2 + R3), where R1 is the
resistance of the single resistor in the lower branch.

23. The term  “high wattage” refers to the large amount of power dissipated in the bulb. More power is
dissipated when the resistance is larger, and this is done in a light bulb by making the filament long
and thin. A curled up filament allows for a longer filament in a small space.
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Solutions to Problems

1. We find the average current density from
Jav = I/A = (0.46 A)/[π(2.2  ×  10– 3 m)2/4] = 1.2 × 105 A/m2 .

The charge that passes a fixed point is
q = It = (0.46 A)(1 s) = 0.46 C.

2. We find the density of carriers from
Jav = I/A = nqq vd;

(1.2 A)/(4.2 × 10– 5 m2) = nq(1.6 × 10–19 C)(0.32 × 10– 5 m/s), which gives     nq = 5.6 × 102 8 carriers/m3 .

3. We find the drift speed from
Jav = I/A = nqq vd;
(100 A)/(36 × 10– 6 m2)= (5.7 × 102 8 carriers/m3)(1.6 × 10–19 C)vd , which gives vd = 2.0 × 10– 4 m/s.

The time to travel the length of the cable is
t = L/vd = (2 m)/(2.0 × 10– 4 m/s) = 1.0 × 104 s  (2.8 h) .

4. We find the  current  from
I = JA;
I1 = (3 × 105 A/m2)(0.02 × 10– 6 m2) = 6 × 10– 3 A = 6.0 mA.
I2 = (13 × 104 A/m2)(0.2 × 10– 6 m2) = 2.6 × 10– 2 A = 26 mA.
I3 = (15 × 104 A/m2)(2 × 10– 6 m2) = 0.30 A .

5. We find the number of electrons from the charge that passes the point:
N = Q/e = It/e = (0.092 A)(1 s)/(1.6 × 10–19 C) = 5.8 × 101 7 electrons.

6. For the current density, we have
J = nqq vd;

7.2 × 102 A/m2 = (3.5 × 102 4 carriers/m3)(1.6 × 10–19 C)vd, which gives vd = 1.3 × 10– 3 m/s.

7. For the current density, we have
J = I/A = nqq vd;
(1.2 A)/[π(1.8 × 10– 3 m)2] = (8.5 × 102 8 electrons/m3)(1.6 × 10–19 C/electron)vd , which gives

vd = 8.7 × 10– 6 m/s.
For the second wire, the only change is the area, so we have

vd2 = vdR1
2/R2

2 = (8.7 × 10– 6 m/s)(1.8 mm)2/(1.2 mm)2 = 2.0 × 10– 5 m/s.

8. For the current density, we have
J = I/A = nqq vd;
(6.1 × 10– 3 A)/(0.50 × 10– 4 m2) = ne(1.6 × 10–19 C)(3.5 × 107 m/s), which gives

ne = 2.2 × 101 3 electrons/m3 .

9. We find the number of electrons from the charge that passes the point:
N = Q/e = It/e = (200 × 10– 3 A)(1 h)(3600 s/h)/(1.6 × 10–19 C) = 4.5 × 102 1 electrons.

We find the number of electrons in a 1-m length of the beam from the time to travel 1 m:
t = L/v;
N = It/e = IL/ev = (200 × 10– 3 A)(1 m)/(1.6 × 10–19 C)(3 × 108 m/s) =  4.2 × 109 electrons.
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10. Because the current density is constant, we find the current from
I s = ∫∫     

r 
J  ·       d

r 
A  =     

r 
J  ·    

r 
A ;

Ix = [(A    ̂  i  + B    
ˆ j  + C    ̂  k ) mA/cm2] · (1 cm2)    ̂  i  = A mA.

Iy = [(A    ̂  i  + B    
ˆ j  + C    ̂  k ) mA/cm2] · (1 cm2)    

ˆ j  = B mA.

Iz = [(A ˆ i  + B    
ˆ j  + C ˆ k ) mA/cm2] · (1 cm2) ˆ k  = C mA.

11. Because the current density is a function of the distance from the axis,
we choose a circular ring for the differential area and integrate to
find the current:

I = J · dA
area

= J dA
area

= J0 1 − r2

R2 2πr dr
0

R

= 2π J0 r − r3

R2 dr
0

R

= 2π J0
r2

2
− r4

4R2
0

R

= π
2 J0R

2.

12. We take the x-axis to the right.  If ve is the speed of the electrons, we have

    
r 
J   =     

r 
J electrons +     

r 
J ions  = n(– e)(– ve)

ˆ i  + ne(1.5  × 10–3 ve)
ˆ i  = neve(1 + 1.5  × 10– 3) ˆ i  = (1.0015neve)

ˆ i ,
so the net current density is 1.005neve  to the right.

13. Because a mol of NaCl contributes an Avogadro's number of positive ions and an equal number of
negative ions, we find the density for each carrier from

n+ = n– = n = (0.1 mol/L)(6.02 × 102 3 ions/mol)(103 L/m3) = 6.02 × 102 5 ions/m3.
Because both types of carriers are present, we have

J = n+q+v+ + n–q–v– = nev+ + n(– e)v– = ne[v+ – (– 1.5v+)] = 2.5nev+ ;
40 A/m2 = (6.02 × 102 5 ions/m3)(1.6 × 10–19 C/ion)(2.5v+), which gives
v+ = 1.7 × 10– 6 m/s,  v– = – 2.5 × 10– 6 m/s.

14. For the current density, we have
J = I/A = nqq vd;
(100 A)/π(2 × 10– 3 m)2 = (8.5 × 102 2 electrons/cm3)(102 cm/m)3(1.6 × 10–19 C/electron)vd ,

which gives  vd = 5.9 × 10– 4 m/s.
If the diameter were doubled, A would increase by a factor of 4, so vd would decrease by a factor of 4 .

15. The time for the charged particle to circle the accelerator is T = 2πR/v.  So the current is
I = q/T = qv/2πR = (1.6 × 10–19 C)(3 × 108 m/s)/[2π(2.5 × 103 m)] = 3.1 × 10–15 A.

16. Because each particle contributes the same current, we have
N = Itotal/I = (42 × 10– 3 A)/(3.1 × 10–15 A) = 1.4 × 101 3 .

17 . We find the current from  I = Q/t = (10 × 103 C)/(3.6 × 103 s) = 2.8 A. The current density is
J = I/A = (2.8 A)/(50 × 10– 6 m2) = 5.6 × 104 A/m2 .

We find the free electron density from
ne = ρNA/M = (2.7 g/cm3)(102 cm/m)3(6.02 × 102 3 atm/mol)/(27 g/mol) = 6.0 × 102 8 electrons/m3.

We find the drift speed from
vd = J/nee = (5.6 × 104 A/m2)/(6.0 × 102 8 electrons/m3)(1.6 × 10–19 C/electron) = 5.8 × 10– 6 m/s.

R
r

dr

    
r 
J 
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18. We find the free-electron density from
ne = ρNA/M

     = (19.3 × 103 kg/m3)(6.02 × 102 3 atm/mol)/[(197 g/mol)(10– 3 kg/g)]
     = 5.90 × 102 8 electrons/m3.

We find the drift speed from
vd = J/nee = I/Anee

      = (0.3 A)/[π(0.5 × 10– 3 m)2(5.90 × 102 8 electrons/m3)(1.60 × 10–19 C/electron)]
      = 4.0 × 10– 5 m/s.

19. The total current must be the same on each side of the junction:
Itotal = 2I1 = 3I2;
2(3 A) = 3I2 , which gives I2 = 2 A in each of the smaller wires.

We find the drift speed in the larger wires from
v in = J/nee = I1/A1nee

       = (3 A)/[π(0.1 cm)2(7 × 102 2 electrons/cm3)(1.60 × 10–19 C/electron)]
       = 8.5 × 10– 3 cm/s =  8.5 × 10– 5 m/s.

We find the drift speed in the smaller wires from
vout = J/nee = I2/A2nee

  = (2 A)/[π(0.05 cm)2(7 × 102 2 electrons/cm3)(1.60 × 10–19 C/electron)]
  = 2.3 × 10– 2 cm/s = 2.3 × 10– 4 m/s.

The combined area of the smaller wires is less than the combined area of the larger wires.  Charge
conservation is equivalent to mass conservation in water flow, so the smaller area requires a greater
speed.

20. As a function of r, the drift speed is
v = v0(1 – r/R).

This variable drift speed means the current density is a function of r.  We find the total current by
selecting a ring of radius r and thickness dr, then we add (integrate) the contributions from all of the
rings:

I = J · dA = nqqv 2πr dr
0

R

= 2πnqqv0 1 − r
R r dr

0

R

= 2πnqqv0
r2

2 − r3

3R 0

R
= 2πnqqv0

R2

2 − R3

3R = 1
3πnqqv0R

2.

For a constant drift speed of !v0 , the current is
I ′ = nqq(!v0)πR2 = !πnqq v0R2.

The ratio of currents is
I/I ′ = @/! =   %.

Even though the drift speed varies linearly, this ratio is not 1, since there is more area at the lower
speeds.

21. With d << R, from symmetry, the current density in the tube is constant:
Jtube = I/A = I/2πRd along the tube.

The current density in the top plate is radial and depends on the
distance from the axis r:

Jplate = I/A = I/2πrd radial .
R

r

I

      
r 
J plate

      
r 
J tube
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22. The variable charge density and drift speed means the current density is a function of r.  We find the
total current by selecting a ring of radius r and thickness dr, then add (integrate) the contributions from
all of the rings:

I = J · dA = nqv 2πr dr
0

R

= 2πq n0 − n′r v0 − v′r2 r dr
0

R

= 2πq n0v0r − n′v0r2 − n0v′r 3 + n′v′r4 dr
0

R

= 2πq n0v0
r2

2 − n′v0
r3

3 − n0v′ r4

4 + n′v′ r5

5 0

R
, which gives

I = πqR2 (n0v0 – 2n′v0R/3 –  n0v′R2/2 + 2n′v′R3/5) .

23. Because the material is the same, we have
R2/R1 = (L2/A2)/(L1/A1) = (L2/L1)(D1/D2)2 = (!)(2)2 = 2;  R2 = 2R1 .

24. Because the length is the same, we have
Rgold/Rsilver = (ρgold/Agold)/(ρsilver/Asilver) = (ρgold/ρsilver)(Dsilver/Dgold)2

1 = (1/1.5)(Dsilver/Dgold)2 , which gives  Dsilver/Dgold = 1.22.

25. (a ) We find the resistance from
R = ρL/A = (2.82 × 10– 8 Ω · m)(528 m)/(0.12 × 10– 4 m2) = 1.2 Ω .

(b) We form the ratio of resistances:
R2/R1 = (ρ2/ρ1)(L2/L1)(A 1/A2) ;
1 = [(1.72 × 10– 8 Ω · m)/(2.82 × 10– 8 Ω  · m)](1)[(0.12 × 10– 4 m2)/πr2

2], which gives
r2 = 1.5 × 10– 3 m = 0.15 cm.

26. (a ) We find the resistance from
R = ρL/A
    = (1.72 × 10– 8 Ω · m)(100 ft)(0.305 m/ft)/{#π[(0.0403 in)(2.54 × 10– 2 m/in)]2} =  0.637 Ω .

(b) We find the length from
L2 = R2(L/R)

= (7.5 Ω)(100 ft)/(0.637 Ω) = 1.18 × 103 ft   (359m).

27. We find the resistance from
R = ρL/A   = (1.72 × 10– 8 Ω · m)(10 m)/[#π(0.2588 × 10– 2 m)2] = 3.27 × 10– 2 Ω .

28. We find the resistance from
R = ρL/A   = (3.5 × 10– 5 Ω  · m)(20.0 × 10– 2 m)/[#π(5.0 × 10– 3 m)2] = 0.36 Ω .

We find the current from
I = V/R = (380 V)/(0.36 Ω) = 1.1 × 103 A.

29. We find the resistance from
R2 0 = ρ2 0L/A = (1.72 × 10– 8 Ω · m)(2 m)/(36 × 10– 6 m) = 9.6 × 10– 4 Ω .

The increase in resistance is
∆R = R2 0α(T – 20°C) = (9.6 × 10– 4 Ω)(0.0039/C°)(80°C) = 3.0 × 10– 4 Ω .

30. We find the radius from
R = ρL/A = R = ρL/πr2;
10 Ω  = (1.72 × 10– 8 Ω  · m)(175 × 103 m)/πr2, which gives r = 9.8 × 10– 3 m = 9.8 mm.
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31. The resistance of the wire of length L and cross-sectional area A is R = ρL/A. But according to Ohm’s
law R = V/I, so ρL/A = V/I,  which we solve for L:

L = AV/ρI = (0.20 × 10–6 m2)(120 V)/[5.6 ×10–8 )(15 A)] = 29 m.

32. The current density is given by
Jav = I/A = nqq vd;  or   vd = Jav /nqq. Thus
 (vd)Cu/(vd)Al = ( Jav /nqq)Cu /( Jav /nqq)Al = (nq)Al /(nq)Cu = (18 × 1028 m–3)/(9 × 1028 m–3) = 2.

33. The power consumed in a resistor is
P = IV = I 

2R = V 
2/R.

With a fixed potential difference, we have
(P2 – P1)/P1 = (1/R2 – 1/R1)/(1/R1) = (R1 – R2)/R2.

If we assume that the temperature coefficient does not change with temperature, we get
(P2 – P1)/P1 = {R2 0[1 + α(T1 – 20°C)] – R2 0[1 + α(T2 – 20°C)]}/R2 0[1 + α(T2 – 20°C)]

  = α(T1 – T2)/[1 + α(T2 – 20°C)] = (0.0045/°C)(– 400°C)/[1 + (0.0045/°C)(1180°C)]
  = – 0.27.

Because the resistance has increased, the power consumption has decreased.

34. We find the length of the equivalent single wire from
R = V/I = ρL/A;
(1.5 V)/(0.14 A) = (1.7 × 10– 8 Ω · m)L/[#π(0.24 × 10– 3 m)2], which gives L = 28.5 m.

The distance to the short is  d = L/2 =  14.3 m.

35 . We find the current from
R = V/I = ρL/A = ρ0(1 + α ∆T)L/A.

Table 26–2 gives the resistivity at 20°C.  At 25°C, we have
(50 V)/I2 5 = (100 × 10– 8 Ω · m)[1 + (4 × 10– 4 /C°)(5°C)](0.50 m)/[#π(0.5 × 10– 3 m)2],

which gives  I2 5 = 19.6 A.
At 400°C, we have

(50 V)/I400 = (100 × 10– 8 Ω · m)[1 + (4 × 10– 4 /C°)(380°C)](0.50 m)/[#π(0.5 × 10– 3 m)2],
which gives  I400 = 17.1 A.

36. If we ignore dimension changes, with I constant, we have
V2/V1 = R2/R1 = ρ2/ρ1 = ρ2 0[1 + α(T – 20°C)]/ρ2 0 = 1 + α(T – 20°C);
(8.7 mV)/(8.5 mV) = 1 + (0.0039/C°)(T – 20°C),  which gives T = 26°C.

37. From the expression for the resistance, R = ρL/A, we form the ratio
RAl/RCu = (ρAl/ρCu)(LAl/LCu)(A Cu/AAl) = (ρAl/ρCu)(LAl/LCu)(rCu/rAl)2;
1 = [(2.8 × 10– 8 Ω · m)/(1.7 × 10– 8 Ω · m)](L/5L)(rCu/rAl)2, which gives  rCu/rAl = 1.74.

38. We find the resistivity from
R = V/I = ρL/A;
(12.0 V)/(1.07 A) = ρ(100 m)/(0.5 mm2)(10– 3 m/mm)2, which gives ρ = 5.6 × 10– 8 Ω  · m.

When we look at the values listed in Table 26–2, we see that the material is tungsten.

39. We find the length of the wire from
R = ρL/A;
1.35 Ω = (1.72 × 10– 8 Ω · m)L/[(1.5 mm2)(10– 3 m/mm)2], which gives L = 118 m.

The number of turns around the spool is
N = L/πD = (118 m)/[π(0.20 m)] = 188 turns.
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40. We express the voltage in terms of the current and radius:
V = IR = IρL/A = IρL/πr2.

If we use this for the two wires and take the ratio, we have
V1/V2 = (I1ρL/I2ρL)(πr2

2/πr1
2) = (I1/I2)(r2/r1)2.

We see that r2/r1 will be minimum when V2/V1 has its maximum value of 1.5:
1/1.8 = (1/2)(r2/r1)min

2, which gives (r2/r1)min = 1.05.

41. We find the resistance from
RAl = ρAlL/AAl

 = (2.8 × 10– 8 Ω · m)(80 m)/#π(0.12 × 10– 2 m)2 = 2.0 Ω .
The mass of the wire is

mAl = ρm,AlAAlL

  = (2.7 × 103 kg/m3)[#π(0.12 × 10– 2 m)2](80 m) = 0.24 kg.
We find the area of the copper wire from

RCu = ρCuL/ACu;
2.0 Ω =  (1.7 × 10– 8 Ω · m)(80 m)/ACu , which gives ACu = 6.8 × 10– 7 m2.

The mass of the copper wire is
mCu = ρm,CuACuL = (8.9 × 103 kg/m3)(6.8 × 10– 7 m2)(80 m) =  0.48 kg.

42. For the resistance, we have
R = ρL/A = ρL/πr2;
2 Ω = (1.72 × 10– 8 Ω · m)L/πr2.

The mass of the wire is
m = ρmAL;
1.5 kg = (8.9 × 103 kg/m3)πr2L.

This gives us two equations with two unknowns, L and r.  When we solve them, we get
r = 6.2 × 10– 4 m = 0.62 mm,    and    L = 1.4 × 102 m.

43. For the resistance, we have
R = ρL/A;
5 Ω = (1.59 × 10– 8 Ω  · m)(103 m)/A, which gives A = 3.18 × 10– 6 m2.

We find the mass of the wire from
m = ρmAL = (10.5 × 103 kg/m3)(3.18 × 10– 6 m2)(103 m) =  33.4 kg.

44. For the resistance, we have
R = ρL/A = ρL/π(routside

2 – rinside
2) ;

3.5 Ω = (1.72 × 10– 8 Ω · m)L/π[(2.75 × 10– 2 m)2 – (2.45 × 10– 2 m)2], which gives  L = 1.0 × 105 m.

45. For the resistance, we have
R1 = ρL/A1 = ρL/π(routside

2 – rinside
2)

    = (1.72 × 10– 8 Ω · m)(1 m)/π[(0.2 × 10– 2 m)2 – (0.1 × 10– 2 m)2] = 1.82 × 10– 3 Ω .
For the solid wire, we have

R2 = ρL/A2 = ρL/πr2.
If we divide the two equations, we get

R2/R1 = 1 = r2/(routside
2 – rinside

2), which becomes
r2 = routside

2 – rinside
2 = (0.2 cm)2 – (0.1 cm)2, which gives r = 0.17 cm.

The ratio of masses is 
m2/m1 = ρmLA2/ρmLA1 = A2/A1 = r2/(routside

2 – rinside
2) = 1.

The masses are the same.
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At VC ,  R → 0; VC is the breakdown voltage.

47. When two identical lightbulbs are connected in series the current flowing through them is the same,
and so is the power consumption. They should be identical in brightness. If a third lightbulb is
connected in series with the second one, then the current flowing through the first lightbulb must split
equally for the second and the third lightbulb, so the current in bulb 1 is 2 times as much as those in bulb
2 and 3. Since the power consumption is proportional to I2, bulb 1 consumes 4 times as much power as bulbs
2 and 3, and is therefore 4 times as bright as the other two lightbulbs.

48. (a ) Because the bulbs in Circuit II are in parallel, the
potential difference across each bulb is the same as in
Circuit I.  Each bulb will have the same brightness,
which will be the brightness of the bulb in Circuit I.
(Note that more power will come from the battery.)

(b) If one bulb is removed from Circuit II, there will still be
a closed circuit for the other bulb, which will be the same
as Circuit I, so the brightness of the remaining bulb will
not change.  It does not matter which bulb is removed.

49. The voltage across the two-resistor combination is
V = I(R + Rx), so I = V/(R + Rx). Thus the voltage drop across the resistor X is
Vx = IRx = VRx/(R + Rx); so

         8 V = VRx/(10 Ω + Rx)  and   12 V = VRx/(5 Ω + Rx);   from which we get  Rx =  5 Ω ,   V = 24 V.

50. The effective resistance R of the three-resistor combination satisfies
1/R = 1/R1 + 1/R2 + 1/R3  .

With R =  4 Ω, R1 =  20 Ω, and R2 =  12 Ω, we find the value of the third resistor as
R3 = (1/R – 1/R1 – 1/R2 )–1 = [1/(4 Ω) – 1/(12 Ω) – 1/(20 Ω)]–1 = 8.6 Ω .

51 . The equivalent resistance of the five resistors is
Req = ∑Ri = 5R1 = 5(18 Ω) = 90 Ω.

The current in each resistor is the same:
I = V/Req = (16 V)/(90 Ω) = 0.18 A.

The total power dissipated is
P = I  

2Req = (0.18 A)2(90 Ω) = 2.8 W.

52. The equivalent resistance of the two resistors is
Req = ∑Ri = 2R1 = 2(60 Ω) = 120 Ω.

The current in each resistor is the same:
I = V/Req = (120 V)/(120 Ω) = 1.0 A.

The total power dissipated is
P = I  

2Req = (1.0 A)2(120 Ω) = 120 W.

Circuit I Circuit II
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53. We find the equivalent resistance of the two resistors from
1/Req = 1/R1 + 1/R2 = 1/R1 + 1/(2R1) = 3/(2R1) = 3/[2(150 Ω)], which gives  Req = 100 Ω .

54.

We combine R5 and R6 , which are in parallel:
1/R8 = 1/R5 + 1/R6 = 1/(5 Ω) + 1/(5 Ω), which gives R8 = 2.5 Ω.

We  combine R3 , R4 , R8 , and R7 , which are in series:
R9 = R3 + R4 + R8 + R7

= 2 Ω + 1.5 Ω + 2.5 Ω + 2 Ω = 8 Ω.
We combine R2 and R9 , which are in parallel:

1/R1 0 = 1/R2 + 1/R9 = 1/(5 Ω) + 1/(8 Ω),
which gives R1 0 = 3.1 Ω.
We combine R1 and R10 , which are in series:

Req = R1 + R1 0  = 3 Ω + 3.1 Ω = 6.1 Ω .

55 . The current in the 24-Ω resistor is
I1 = VAB/(24 Ω) = (16 V)/ (24 Ω) = 0.67 A.

Since the equivalent resistance of the upper branch of the circuit is
R = 8 Ω + (12 Ω)(6 Ω)/(12 Ω + 6  Ω) = 12 Ω, the current in the 8-Ω resistor is
I2 = VAB/(12 Ω) = (16 V)/ (12 Ω) = 1.3 A.

This current is split between the two remaining resistors, with
I3 = [6 Ω/(6 Ω + 12 Ω)] I2 = @(1.33 A) = 0.44 A in the 12-Ω resistor and
I4 = I2  – I3 = 1.33 A – 0.44 A = 0.89 A in the 6-Ω resistor.

56. In Problem 55 we calculated the current flowing through each resistor. Then we may use P = I2R to find
the power dissipated on each of them:

P = I2R = (0.667 A)2(24 Ω) = 11 W  (for the 24-Ω resistor);
P = I2R = (1.33 A)2(8 Ω) = 14 W      (for the 8-Ω resistor);
P = I2R = (0.889 A)2(6 Ω) = 4.7 W       (for the 6-Ω resistor);
P = I2R = (0.444 A)2(12 Ω) = 2.4 W       (for the 12-Ω resistor).

R4
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57. Call the lower branch with the single 12-Ω resistor branch 1 and the other one (which contains all the
other resistors) branch 2.  First, we find R2, the equivalent resistance of branch 2. Combine the 2-Ω and
4-Ω resistors in parallel to obtain (2 Ω)(4 Ω)/(2 Ω  + 4 Ω) = 1.33 Ω, which we add to the 8-Ω resistor
and put the resultant 9.33-Ω resistor in parallel with the 24-Ω resistor: (9.33 Ω)(24 Ω)/(9.33 Ω + 24 Ω)
= 6.72 Ω. Add this to the 6-Ω resistor to obtain R2 = 12.72 Ω.
We now combine R1 (= 12 Ω) and R2 in parallel to obtain the equivalent resistance between A and B:

 Req = R1 R2/(R1 + R2) = (12.72 Ω)(12 Ω)/(12.72 Ω + 12 Ω) = 6.18 Ω.
The voltage across AB, i.e., that across the 12-Ω resistor, is then

V12 Ω = IABReq = (20 A)(6.18 Ω) = 124 V.
The current in the 12-Ω resistor is

I12 Ω = VAB/(12 Ω) = (124 V)/(12 Ω) = 10.3 A,
And the current through the 6-Ω resistor is then

I6 Ω = 20 A – 10.3 A = 9.7 A, which requires a voltage of
V6 Ω =  I6 Ω (6 Ω) = (9.7 A)(6 Ω) = 58 V.

The voltage difference across the 24-Ω resistor is now
V24 Ω = 123.6 V – 58.2 V = 66 V, which drives a current of
I24 Ω = (65.4 V)/(24 Ω) = 2.7 A, leaving the current in the 8-Ω resistor as
I8 Ω = 9.7 A – 2.7 A = 7.0 A, which requires a voltage of
V8 Ω =  I8 Ω (8 Ω) = (7.0 A)(8 Ω) = 56 V.

The voltage applied on the two remaining resistors (4-Ω and 2-Ω) is then
V4 Ω = V2 Ω = 123.5 V – 58.2 V – 56.0 V = 9.3 V, which drives a current of
I4 Ω = (9.3 V)/(4 Ω) = 2.3 A in the 4-Ω resistor and
I2 Ω = (9.3 V)/(2 Ω) = 4.7 A in the 2-Ω resistor.

58. The two parallel branches has an equivalent resistance of R(R + x)/[R + (R + x)], so for the equivalent
resistance of the entire load we have

Req = 3R + R(R + x)/(2R +  x) = x;
x2 – 2Rx – 7R2 = 0;  
x = (1+ √8)R ≈ 3.83 R .

59. (a ) We combine R2 and R3 , which are in parallel:
1/R5 = 1/R2 + 1/R3 = 1/(75 Ω) + 1/(60 Ω),

which gives R5 = 33.3 Ω.
We combine R1 , R5 , and R4 , which are in series:

Req = R1 + R5 + R4 = 33 Ω + 33.3 Ω + 25 Ω,
which gives Req = 91.3 Ω .

(b) We find the current from
I = Vab/Req = (12 V)/(91.3 Ω) = 0.131 A.

The potential difference across the 75-Ω resistor
is Vcd , which we find from

Vcd = IR5 = (0.131 A)(33.3 Ω) = 4.38 V.
(c) From part (b), the current through the 33-Ω resistor is I = 0.131 A.

60. We find the drift speed from
vd = eEτ/m

= (1.6 × 10–19 C)(2.0 × 10– 3 V/m)(2.4 × 10–14 s)/(9.1 × 10–31 kg) =  8.4 × 10– 6 m/s.

61. We estimate the mean free path as the average distance traveled between collisions:
λ = vavτ = (2.7 × 106 m/s)(2.4 × 10–14 s) = 6.5 × 10– 8 m.
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62. From Eq. 19–46 for the mean free path, we have
λ = 1/(nσ √2);
3.7 × 10– 8 m = 1/[(8.5 × 102 8 /m3)σ √2], which gives σ = 2.2 × 10–22 m2 .

63. In terms of the average time between collisions, the resistivity is
ρ = m/ne2τ.

The average time between collisions depends on the drift speed:
τ = mvd/eE.

When we combine these, we have
ρ = meE/ne2mvd = E/nevd.

For the given r-dependence of vd , we have
ρ = E/[nev0(1 – r/R)] = ρ0/(1 – r/R) ,   where ρ0 = E/nev0.

64. From kinetic theory, we have the average kinetic energy of the electron:
K = *kT,

which we use as the energy necessary to cross the energy gap.  For the given elements, we have
Si:  (1.1 eV)(1.6 × 10–19 J/eV) = *(1.38 × 10–23 J/K)TSi , which gives  TSi = 8.5 × 103 K.

Ge:  (0.7 eV)(1.6 × 10–19 J/eV) = *(1.38 × 10–23 J/K)TGe , which gives TGe = 5.4 × 103 K.

C:  (6 eV)(1.6 × 10–19 J/eV) = *(1.38 × 10–23 J/K)TC , which gives TC = 4.6 × 104 K.

65. For an ohmic resistor, we have
P = IV = V 

2/R,   or   R = V 
2/P = (12 V)2/(65 W) = 2.2 Ω .

66. For an ohmic resistor, we have
P = IV = V 

2/R,   or   V 
2 = PR = (1.5 W)(1000 Ω), which gives  V =  39 V.

67. Cost = (rate)Pt = (10 ¢/kWh)(100 W)(1 h)(10– 3 kW/W) = 1 ¢.

68. For an ohmic resistor, we have
P = IV = I 

2R,   or   I = (P/R)1/2.
For the various resistors, we have

P = 1/8 W:  I = [(1/8 W)/(100 Ω)]1/2 = 0.035 A =   35 mA;
P = 1/4 W:  I = [(1/4 W)/(100 Ω)]1/2 = 0.050 A =  50 mA;
P = 1/2 W:  I = [(1/2 W)/(100 Ω)]1/2 = 0.071 A =  71 mA;
P = 1 W:  I = [(1 W)/(100 Ω)]1/2 = 0.10 A;
P = 2 W:  I = [(2 W)/(100 Ω)]1/2 = 0.14 A.

69. For an ohmic resistor, we have
P = IV = I 

2R,   or   I = (P/R)1/2.
(a ) I = [(5 W)/(160 Ω)]1/2 = 0.18 A.
(b) I = [(3 W)/(2.5 × 103 Ω)]1/2 = 3.5 × 10– 2 A = 35 mA.

70. P = IV = (100 × 10– 6 A)(8 × 106 V) =  800 W.

71. For an ohmic resistor, we have
P = IV = V 

2/R,   or   V 
2 = PR,

so the maximum allowed operating voltage is
Vmax = (PR)1/2 .
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72. Cost = (rate)IV = (7 ¢/kWh)(10 A)(120 V)(10– 3 kW/W) =  8.4 ¢/h.

73. We find the energy dissipated as heat from
U = Pt = I 

2Rt = (100 A)2(9 × 10– 4 Ω)(20 s) = 1.9 × 102 J .

74. For an ohmic resistor, we have
P = IV = V 

2/R,   or   V 
2 = PR = PρL/A;

(110 V)2 = (1250 W)(10– 6 Ω · m)L/(0.2 × 10– 6 m2), which gives L = 1.9 m.

75. For an ohmic resistor, we have
P = IV = V 

2/R,   or   V 
2 = PR = PρL/A;

(12 V)2 = (0.8 × 103 W)(1.72 × 10– 8 Ω · m)L/(8 × 10– 6 m2), which gives L = 84 m.

76. (a ) For an ohmic resistor, we have
P = IV, so the maximum power is
Pmax = ImaxV = (15 A)(110 V) = 1.65 × 103 W = 1.65 kW.

(b) We find the maximum number of light bulbs from
N = Pmax/Pbulb = (1.65 × 103 W)/(75 W) = 22 →  22 bulbs.

77. The energy taken out of the battery is
U = Pt = IVt = (50 × 10– 3 A)(6 V)(18 h)(3600 s/h) = 1.94 × 104 J  (5.4 kWh).

78. Assuming a constant resistance, we have
P = IV = V 

2/R,   or
P2/P1  = (V2/V1)2(R1/R2) = (V2/V1)2;
P2/(500 W) = [(105 V)/(115 V)]2, which gives P2 = 417 W.

79. The power dissipated on a wire of surface area A and surface temperature T is
P = σT4 A, where A =  πdl, with l its length and d its cross-sectional diameter.

The current I is related to the power P and the resistance R of the wire as
P = I2R, so
I = (P/R)1/2 = [σT4(πdl)/(ρl/πd2)]1/2 = constant ×  (T2 d3/2) ,

which suggest that I depends more strongly on T (to the 2nd power) than on d (to the *-th power). So it
would be preferable to change the temperature.

80. Because the powers add and the resistors are identical, we have
P = I  

2Req  = I  
2(3R) = 3I  

2R = 3P0 .

81. If we estimate that it takes 3 min to boil a 0.50-L pot, we have
mc ∆T = IVt;
(500 cm3)(1 g/cm3)(1 cal/g · °C)(100°C)(4.185 J/cal) = (4A)V(5 min)(60 s/min),

which gives V ˛ 170 V.
We find the resistance from

R = V/I ˛ 170 V/4 A ˛ 43 Ω .

82. We find the total energy used in the month from
U = $25.33/($0.08/kWh) = 317 kWh.

The average current during the month was
I = P/V = U/Vt, so the charge that passed through the meter was
Q = It = U/V, and the number of electrons was
N = Q/e = U/Ve = (317 kWh)(103 W/kW)(3600 s/h)/(120 V)(1.6 × 10–19 C) = 5.94 × 102 5 electrons.
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83. Because the volume is constant, we have
A2L2 = A1L1.

For a fixed voltage, the power dissipation is
P = V 

2/R = V 
2A/ρL.

If we apply this to the two wires and divide the two expressions, we get
P2/P1   = (V 

2A2/ρL2)(ρL1/V 
2A1)

= (A2/A1)(L1/L2) = (L1/L2)2 = (1/2)2 = 1/4.
The power decreases by 3/4.

84. (a ) We find the number of protons from
N = Q/e = It/e
     = (5 × 10– 6 A)(1 h)(3600 s/h)/(1.6 × 10–19 C) = 1.1 × 101 7 protons.

(b) Because each proton has an energy of 4 MeV, the total energy is
Utotal = NU

= (1.1 × 101 7 protons)(4 × 106 eV/proton)(1.6 × 10–19 J/eV) = 7.2 × 104 J .
(c) We find the power of the beam from

P = Utotal/t

    = (7.2 × 104 J)/(1 h)(3600 s/h) = 20 W.

85. To find the resistance of the cylinder, we choose a
vertical slice at a distance x from the origin, with
radius r = r0 + αx and thickness dx.  We find the
resistance by integrating over these slices:

   
R = ρ dL

A
= ρ dx

πr2
0

L

= ρ
π

dx
r0 + αx

2

0

L

= – ρ
πα

1
r0 + αx 0

L

= – ρ
πα

1
r0 + αL

– 1
r0

= ρL

πr0 r0 + αL
.

86. (a ) When the bulbs are connected in series, the equivalent resistance is
Rseries = ∑Ri = 10Rbulb.

The power consumption is
P = Vab

2/Req;
50 W = (120 V)2/(10Rbulb), which gives       Rbulb = 28.8 Ω .

(b) In part (a), the power consumption of each bulb is 5 W, which is the maximum power rating, so the
voltage  across each bulb, 12 V, must be the maximum allowed. With the limiting resistor
connected in series with the parallel bulb combination, we find the equivalent resistance of the
ten bulbs from

1/Rparallel = ∑(1/Ri) = 10/Rbulb = 10/(28.8 Ω), which gives Rparallel = 2.88 Ω.
For the maximum consumption, the voltage across each bulb, and thus Rparallel , is 12 V, so we have

Vparallel = ItotalRparallel;
12 V = Itotal(2.88 Ω), which gives Itotal = 4.17 A.

With the series resistor, we have
Vab = Itotal(Rparallel + R2) ;
120 V = (4.17 A)(2.88 Ω + R2), which gives R2 = 25.9 Ω  in series.

The power loss in the added resistor is
P2 = Itotal

2R = (4.17 A)2(25.9 Ω) = 4.5 × 102 W.

y

x
L

r = r0 + αL
r0

0
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87. We can reduce the circuit to a single loop by successively
combining parallel and series combinations.
We combine R3 and R5 , which are in parallel:

1/R6 = 1/R3 + 1/R5 = 1/(3 Ω) + 1/(6 Ω),
which gives R6 = 2 Ω.
We  combine R2 , R6 , and Rx , which are in series:

R7  = R2 + R6 + Rx  = 2 Ω + 2 Ω + Rx = 4 Ω + Rx.
We combine R4 and R7 , which are in parallel:

1/R8 = 1/R4 + 1/R7 = 1/(4 Ω) + 1/(4 Ω + Rx) ,
which gives R8 = (16 Ω + 4Rx)/(8 Ω + Rx) .
We find the current in the single loop from

I = ε/(R1 + R8)
   = (24 V)/[1 Ω + (16 Ω + 4Rx)/(8 Ω + Rx)]
   = [24(8 Ω + Rx)/(24 Ω + 5Rx)] A.

We use the voltage across R8 and across R4 :
Vab = IR8 = I4R4;
[24 A (8 Ω + Rx)/(24 Ω + 5Rx)] × 

[(16 Ω + 4Rx)/(8 Ω + Rx)] = I4(4 Ω),
which gives

I4 = [24 (4 Ω+ Rx)/(24 Ω + 5Rx)] A.
The power dissipated is

P4 = I4
2R4

      = [24(4 Ω + Rx)/(24 Ω + 5Rx)]2(4 Ω)
      =  [48(4 Ω + Rx)/(24 Ω + 5Rx)]2 W.

88. The power dissipated in the bus bar is
P = I 

2R = I 
2ρL/A = I 

2ρ0(1 + α ∆T )L/A;
0.2 W = (100 A)2(1.72 × 10– 8 Ω · m)[1 + (0.0039 /°C)(300 K – 20 K)](0.25 m)/A,

which gives  A = 4.5 × 10– 4 m2    ˛ 1.5 cm × 3.0 cm.

89 . The power delivered by the generator is
P = IV = (75 A)(12 V) = 9.0 × 102 W = 0.9 kW.

For the generator to supply the energy required to raise the temperature of the water, we have
mc ∆T = Pt1;
(10– 3 m3)(102 cm/m)3(1 g/cm3)(1 cal/g · °C)(7.5°C)(4.185 J/cal) = (9.0 × 102 W)t1 ,

which gives   t1 = 35 s .
The mass of 0.5 L of water is m = (0.1 × 103 cm3)(1 g/cm3) = 500  g.  For the water to boil away, we have

mc ∆T + mLv = Pt2;
(500 g)(1 cal/g · °C)(75°C)(4.185 J/cal) + (500 g)[(1 mol)/(18 g)](41 × 103 J/mol) = (9.0 × 102 W)t2 ,

which gives  t2 = 1.4 × 103  s = 23 min.
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90.

We find the power from P = IV, estimating values from the plot. Note the change in scales on the two
sides of the plot.
In the ideal diode, either the potential or the current is zero, so the power is zero.

91. (a ) If the resistivity of the wire is ρ0 at T0 , the resistance of the wire is
R = ρL/A = (ρ0L/A)(1 + α ∆T) = (ρ0L/A)(1 + αkt2) .

For a constant potential, the current is
I = V/R = VA/ρ0L(1 + αkt2) = I0/(1 + αkt2) .

(b) The power dissipated in the wire is
P = IV = VI0/(1 + αkt2) .

(c) The rate at which the dissipated power changes is
dP/dt = VI0(– 2αkt)/(1 + αkt2)2 = – 2VI0αkt/(1 + αkt)2.

Because dP/dt < 0, thermal equilibrium will be reached.

92. The resistance of the wire is R = ρL/A, and the current is I = JA = nevdA.  The power dissipated, which
becomes thermal energy, is

P = I 
2R = (nevdA)2ρL/A = (nevd)2AρL

    = [(8.5 × 102 8 electrons/m3)(1.6 × 10–19 C)(1.2 × 10– 5m/s)]2[π(0.5 × 10– 3 m)2](1.72 × 10– 8 Ω · m)(3 m)
    = 1.1 × 10– 3 W.

For the wire to maintain its temperature, thermal energy must be removed at this rate, 1.1 × 10– 3 W.

93. If a coil has length ¬, the number of turns in the coil is
N = ¬/2r,    so
N 2/N1 = r1/r2.

Because a turn has a length πD, the length of a wire is
L = NπD,   so
L2/L1 = N2D2/N1D1 = r1D2/r2D1.

The resistance of a wire is
R = ρL/A, so we have
R2/R1  = (ρL2/πr2

2)/(ρL1/πr1
2) = (r1D2/r2D1)(r1/r2)2 = (D2/D1)(r1/r2)3

= [(8 cm)/(5 cm)][(0.6 mm)/(0.4 mm)]3 = 5.4.

P

I
10 mA 20 mA1 µA2 µA

5 mW

10 mW

0.1 mW

0.2 mW

ForwardReverse
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94. (a ) From the conservation of charge, we know that the current must be constant along the wire.
Because the area is also constant, we have

E = ρJ = ρ0Je – x/L = (ρ0I/A)e – x/L =  E0e  – x/L .
(b) We take the reference level for V to be V = 0 at x = L, so V = V0 at x = 0.  We integrate the relation

between the field and the potential, E = – dV/dx:
   
dV

V0

V

= – E dx′
0

x

= – E0 e– x′/L dx′;
0

x

V – V0 = – E0 – L e – x ′/L

0

x

= + E0L e – x/L – 1 = – E0L 1 – e– x/L .

We can determine E0 from our reference level:
– V0 = – E0L(1 – e– 1), which gives E0L = V0/(1 – e– 1) .

The potential is
V = V0 – V0(1 – e –x/L)/(1 – e – 1) =  V0(e  – x/L – e – 1)/(1 – e – 1) .

(c) We choose a differential segment of the wire at x with length dx.  We find the resistance by
integration:

   
R = ρ dL

A
= ρ0e

– x /L dx
A0

L

= – ρ0L
A

e – x/L

0

L

= – ρ0L
A

e– 1 – 1 = ρ0L
A

1 – e – 1 .

95. If we ignore the change in the dimensions of the wire, the resistance of the wire will be a function of the
temperature:

R = R0(1 + α ∆T) = R0[1 + α(T – T0)].
Because all of the energy from Joule heating raises the temperature of the wire, we have

P = I 
2R = V 

2/R = V 
2/R0[1 + α(T – T0)] = mc(dT/dt), which gives

dT/dt = k/[1 + α(T – T0)],   where k = V2/mcR0 .
The solution of this equation will give the temperature as a function of time, T(t).
We find the current from

I(t) = V/R = V/R0{1 + α[T(t) – T0]} .
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CHAPTER  27   Direct-Current Circuits

Answers to Understanding the Concepts Questions

1. Tap water is an excellent conductor, and if the appliance falls into the tub there is a danger that a large
current will flow through the body of the person in the tub, causing bums and sometimes heart failure.

2. The voltmeter measures the terminal voltage V across the battery, and that depends on the current  I
drawn and the internal resistance r of the battery: V =  ε – Ir. While ε and r do not change appreciably,
I can. (Even r can increase, if the battery gets warmer.)

3. The current that flows into the battery is the same as the current flowing out of the battery. Whether
there is a potential drop Ir just before the current reaches the battery or whether the drop occurs just
after the current leaves the battery is irrelevant, since either way there will be the same contribution
to the loop rule, and that is all that counts.

4. It makes sense when the resistance of the wire is negligible in comparison with those of the resistors.

5. This is impossible, since by choosing the direction in which the emf is positive, one could create a
situation in which one would be creating energy. Such "perpetual motion" machines violate energy
conservation.

6. The battery could be all right, of course. Keep in mind, however, that it has to provide the right
terminal voltage when hooked up to a working load, not just a voltmeter with presumably a very large
resistance. As the resistance of the load decreases the current flowing in the battery increases, and the
terminal voltage, V =  ε – Ir, could drop appreciably. Here r is the internal resistance of the battery.

7. An unfair question. The circuit in a flash does not give the falling exponential characteristic of a pure
RC circuit. Rather it uses solid-state devices to tailor the release of energy from a capacitor, typically
of size 1000 µF, so that a current that is basically flat for a period of about 0.01 s results. If we work
backwards and ask what value of R in a pure RC circuit would give a time constant τ = RC of 0.01 s with
a capacitor or 1000 µF, we would find R = τ/C = (0.01 s)/(10–3 F) = 10 Ω, a very reasonable value.

8. The time constant of an RC circuit is τ = RC. To make the discharge time as short as possible we need to
minimize τ, which means we want the lowest possible value of C out of the three capacitors. This can be
done by connecting the three capacitors in series.

9. There is no disaster. With the new choice of positive direction for the current, I is related to Q as I =
– dQ/dt. Thus from  IR – Q/C = 0  we get  – R(dQ/dt) – Q/C = 0, which again leads to the finite solution
Q = Q0 e

–t/RC.

10. Let's construct a potential energy diagram with a fluid analogy in mind. The batteries “raise” the
liquid, increasing its potential energy. A resistance corresponds to a drop of potential energy given by
IR. When the current goes through resistors in series, it is as if it cascaded down several downward
slopes. If current goes through two resistors in parallel, it splits up so “at the bottom” the two currents
are reunited at the same potential. Consider now this diagram turned upside down. The batteries (with
reversed polarities) now lower the potential, and IR must raise them. Since R is unchanged by the
reversal, I must change sign.
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11. The maximum possible emf you can get out of two emf sources is the sum of the two emf values, which is
obtained when you connect  the two sources in series. To ensure that each light bulb gets that maximum
emf we can hook up the light bulbs in parallel and apply the combined emf across each of them
simultaneously. This ensures maximum power consumption for each light bulb and therefore maximum
brightness –– assuming, of course, that the emf does not exceed the maximum value allowed by each
light bulb (so none of them would burn out).

12. The effective net emf is the difference between the two emf values:  εeff =  ε1 –  ε2 ,  when they are
connected + to + and – to –. The larger emf wins, of course, and the resulting current in the circuit is I =
εeff/Req .

13. The effective emf that drives the current in the circuit is now  εeff =  ε1 +  ε2 , and the magnitude of the
current increases.

14. Technically speaking this is certainly true. However, it is useless information. The value of the current
itself depends on the rest of the circuit as well as on the value of the internal resistance, and so does the
value of the “shifted” emf This is not a very useful way to think about a circuit. In contrast, the original
emf is a constant which at least for an ideal battery does not vary with current.

15. In the circuit diagram depicted in Fig. 27-8(a), R2 and R3 are in series, as are R5 and R6 , and the two
branches are in parallel with R4 . The equivalent resistance of this three-branch combination is R =
[1/(R2 + R3) + 1/R4  + 1/(R5 + R6)]–1.   Put this in series with R1 and we get a single-loop circuit. In general,
such reduction is not possible for the circuit diagram depicted in Fig. 27-8(b), unless R2/R3 = R5/R6, in
which case the voltage difference across R4 is zero so that it can be removed from the circuit.

16. The teenagers provide a path for the current parallel to the wire. If the wire has no resistor along it,
the resistance is low compared to that of the teenager, and most of the current flows through the wire.
With the resistor, more of the current flows through the teenager, with more serious consequences. They
are both dumb, but the one with the resistor is dumber.

17. The steady-state value of I1 decreases as R3 is increased.

18. When the lights are on, a current runs through the battery that powers the lights. Heat is generated as
the current flows through the battery due to its internal resistance, and the battery warms up.
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Solutions to Problems

1. Because the internal resistance of the battery is the only resistance in the single-loop circuit, we have
I = ε/r;
80 A = (12 V)/r, which gives r = 0.15 Ω .

2. The solar panel is a source of emf, so the power output is
P = Vterm I;
1200 W = Vterm(40 A), which gives Vterm = 30 V.

3. For this single-loop circuit, we have
I = ε/(R + r);
1.99 A = (3 V)/[(1.50 Ω + r)], which gives  r = 0.0075 Ω .

4. The energy contained in the battery is the total energy output:
U = IVt = (It)V = (30 A · h)(3600 s/h)(30 V) = 3.2 × 106 J .

5. For this single-loop circuit, we have
I = Vterm/(R + r) = (5000 V)/(230 Ω + 20 Ω) = 20 A.

6. For this single-loop circuit, we have
I = ε/(R + r);
170 × 10–3 A = ε/(15 Ω + 0.06 Ω), which gives     ε = 2.56 V.

The terminal voltage of the battery is
V = ε – Ir = 2.56 V – (170 × 10–3 A)(0.06 Ω) = 2.55 V.

7. The terminal voltage of the battery is
V = ε – Ir;
9.0 V = 12 V – (100 A)r, which gives r = 0.030 Ω .

The power dissipated within the battery is
P = I  

2r = (100 A)2(0.030 Ω) =  300 W.

8. The terminal voltage of the battery is the voltage drop across the starter:
V term = ε – Ir = IR;
8 V = 12 V – Ir = I(0.11 Ω), which gives  I = 73 A,   and   r = 0.05Ω.

The rate at which heat is produced is the power dissipated within the battery.  For 10 s we have
W = I  

2rt = (73 A)2(0.05 Ω)(10 s)/(4.185 J/cal) = 0.6 × 103 cal ˛ 0.6  kcal .
This would raise the temperature of a liter of electrolyte (water) by ˛ 0.6°C, which may decrease the
internal resistance slightly.  It is more important to raise the temperature of the oil.

9. The terminal voltage of the battery is
V term = ε – Ir = ε – I(α + βI).

The power dissipated within the battery is
P = I  

2r = I  
2(α + βI).

For I = 1.0 A, we have
V1 = (12.0 V) – (1.0 A)[0.15 Ω + (0.018 Ω/A)(1.0 A)] = 11.8 V.
P1 = (1.0 A)2[0.15 Ω + (0.018 Ω/A)(1.0 A)] = 0.17 W.

For I = 10.0 A, we have
V1 0 = (12.0 V) – (10.0 A)[0.15 Ω + (0.018 Ω/A)(10.0 A)] = 8.7 V.
P1 0 = (10.0 A)2[0.15 Ω + (0.018 Ω/A)(10.0 A)] = 33 W.
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10. The resistance of each bulb can be found from its rating: R1 = 2.5 V/0.5 A = 5.0 Ω, and R2 = (110 V)2/10 W
=  1.21  kΩ (as P2 = V2

2/R2). When connected in series the equivalent resistance of the two bulbs is R =
R1 + R2 , and when hooked up to a power supply of ε = 110 V the current through each bulb is

I = ε/( R1 + R2) = 110 V/(5.0 Ω + 1.21  kΩ) = 0.0905 A. The power consumed on each bulb is then
P1 = I2 R1 = (0.0905 A)2(5.0 Ω) = 0.041 W and
P2 = I2 R2 = (0.0905 A)2(1.21 kΩ) = 9.9 W.

11. If we go around the single loop in the direction shown, starting at
point a, we have

∑ ∆V = – IR2 + ε – IR1 + ε = 0, which gives
I = 2ε/(R1 + R2) .

If we go from a to b, we have
Va – IR2 + ε = Vb = Va ,   or   ε = IR2 .

When we combine this with the expression for the current, we get
ε = 2ε R2/(R1 + R2), which gives  R2 = R1 .

From the expression for the current, we see that
I → 0  when R2 → ∞.

12. (a ) Without the series resistor in the single-loop circuit, we have
I = (ε gen – Nε batt)/(rgen + Nrbatt )

      = [(110 V) – 20(2.2 V)]/[(0.50 Ω) + 20(0.06 Ω)] = 38.8 A.
The terminal voltage of the generator is

Va – Vb = ε gen – Irgen = (110 V) – (38.8 A)(0.50 Ω) = 91 V.
(b) The terminal voltage of the bank of batteries is Vd – Vc.

Because the batteries are being charged, this must be
greater than the total emf of the bank:

Vd – Vc  = N(ε batt + Irbatt)
= 20[2.2 V + (38.8 A)(0.06 Ω)] = 91V.

(c) With the series resistor in the single-loop circuit, we have
I = (ε gen – Nε batt)/(rgen + Nrbatt + R);
15 A = [110 V – 20(2.2 V)]/[0.50 Ω + 20(0.06 Ω) + R], which gives R = 2.7 Ω .

(d) The power dissipated in all the resistors is
P = I  

2(∑R) = (15 A)2[0.50 Ω + 2.7 Ω + 20(0.06 Ω)] = 9.9 × 102 W.

13. Because there are no resistors between points f and g,
they must be at the same potential:

Vgf = 0.
If we choose a path between two points, the potential
difference is the sum of the potential differences of the
segments of the path.  Thus, we have

Vag = Vaf = Vab + Vbc + Vcd + Vdf

  = – Vba – Vcb + Vcd + Vdf

  = – 2 V – 3.5 V + 2 V – 0.5 V = – 4.0 V;
Vca = Vcb + Vba

 = 3.5 V + 2 V = 5.5 V.
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14. (a ) If we assume initially there is no internal resistance, we have
I0 = 2ε/R = 2(1.5 V)/(10 Ω) = 0.30 A.

The power delivered to the bulb is the power dissipated in the bulb:
P0 = I0

2R = (0.30 A)2(10 Ω) = 0.90 W.
(b) If the power delivered to the bulb, which is also the power dissipated in the bulb, decreases by

one-third, we have
P = I  

2R;
%(0.90 W) = I  

2(10 Ω), which gives I = 0.25 A.
For the single-loop circuit, we have

I = 2ε/(R + 2r);
0.25 A = 2(1.5 V)/[(10 Ω) + 2r], which gives r = 1.0 Ω/battery.

15. For the conservation of current, we have
∑Iin = 0;
I1 + I2 + I3 + I4 + I5 + I6 = 0;
(2 A) + (0.5 A)  – (3 A)  – 0.5I6 – I6 + I6 = 0,

which gives I6 =  – 1.0 A.
Thus we have

I4 = +0.5 A,  I5 = +1.0 A,  I6 =  – 1.0 A.

16. From symmetry, the current will be the same in bulbs 1, 2, 4, and 5.
Thus there will be no current through bulb 3, which will have
 zero brightness.

17. (a) With the switch open, the circuit consists of two branches in parallel, one with a resistance of
R1 = (4 Ω + 12 Ω) = 16 Ω, and the other with R2 = (8 Ω + 6 Ω) = 14 Ω. The equivalent resistance is
then
 Req = R1R2/(R1 + R2) = (16 Ω)(14 Ω)/(16 Ω + 14 Ω) = 7.5 Ω .

(b) We assume the current directions shown in the diagram.
We use conservation of current at points a and b:
 ∑Iin = 0;

I1 – I3 – I4 = 0;   I2 + I3 – I5 = 0.
 We apply the loop rule for the two loops indicated in the
diagram:

loop 1:     I1(4 Ω) – I2(8 Ω) + I3(5 Ω) = 0;
loop 2:     – I3(5 Ω) – I5(6 Ω) + I4(12 Ω) = 0.

Also, when an emf ε is applied across the top and bottom of the
circuit

 ε = I1(4 Ω) + I4(12 Ω) = I2(8 Ω) + I5(6 Ω).
These equations yield I1 = 0.084ε/Ω and I2 = 0.059ε/Ω. Thus

Req = ε/(I1 + I2) = ε/(0.084ε/Ω + 0.059ε/Ω) =  7.0 Ω .
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18. Let the current in the 8-Ω resistor be I1, to the right, and that in the 10-Ω resistor be I2, to the right.
Then the current in the remaining two resistors is I1 + I2, to the left.
Apply the loop rule to the loop containing I1 and I2 :

– I1(8 Ω) – 6 V + I2(10 Ω) – 10 V = 0.
Now apply the loop rule to the circumference of the circuit, starting clockwisely from point a:

– I1(8 Ω) – 6 V – (I1 + I2)(4 Ω) + 20 V – (I1 + I2)(16 Ω) = 0.
Solve the two equations above to obtain

I1 = – 0.409 A,  I2 = + 1.27 A. The current in the 16-Ω resistor is then
I1 + I2 = – 0.409 A + 1.27 A = + 0.86 A, to the left .

The voltage difference between  a and b is
Vb – Va =  10 V – (1.27 A)(10 Ω) = –2.7 V, with Vb < Va .

19 . We assume the current directions shown in the diagram.
We use conservation of current at point a:

∑Iin = 0;
I1 – I2 + I3 = 0.

We apply the loop rule for the two loops indicated in the diagram:
loop 1: – I2R2 – ε2 + ε1 – I1R1 = 0;

– I2(10 Ω) – 6 V + 12 V – I1(5 Ω) = 0;
loop 2: + I3R3 – ε3 + I2R2 + ε2 = 0;

+ I3(12 Ω) – 9 V + I2(10 Ω) + 6 V = 0.
When we combine these equations, we get  I1 = + 0.45 A, I2 = + 0.38 A, I3 = – 0.068 A.

20. We assume the current directions shown in the diagram.
We use conservation of current at point a:

∑Iin = 0;
I1 – I2 – I3 = 0.

We apply the loop rule for the two loops indicated in the diagram:
loop 1: ε2 – I2R2 + ε1 – I1R1 = 0;

 5 V – I2(3 Ω) + 3 V – I1(2 Ω) = 0;
loop 2: – I3R3 + I2R2 – ε2 = 0;

– I3(4 Ω) + I2(3 Ω) – 5 V = 0.
When we combine these equations, we get I1 = + 1.577 A, I2 = + 1.616 A, and

I3 = – 0.039 A.  The negative sign means that the current is up.

21. We combine the three resistors, which are in parallel:
1/Req = 1/R1 + 1/R2 + 1/R3

      = 1/(250 Ω) + 1/(420 Ω) + 1/(510 Ω),  which gives Req = 120 Ω.
The potential difference across the equivalent resistance is

Vab = IReq = (0.020 A)(120 Ω) = 2.4 V.
Because this is the potential difference across each resistor, we have

I1 = Vab/R1 = (2.4 V)/(250 Ω) = 9.6 × 10– 3 A =  9.6 mA;
I2 = Vab/R2 = (2.4 V)/(420 Ω) = 5.7 × 10– 3 A =  5.7 mA;
I3 = Vab/R3 = (2.4 V)/(510 Ω) = 4.7 × 10– 3 A = 4.7 mA.

Note that we have conservation of current:
I = I1 + I2 + I3 = (9.6 × 10– 3 A) + (5.7 × 10– 3 A) + (4.7 × 10– 3 A) = 0.020 A.
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22. Because no two resistors have the same current and no two
resistors have the same potential difference across them,
we cannot combine them in series or parallel.
We assume the current directions shown in the diagram.
We use conservation of current at point a:

∑Iin = 0;
I1 – I2 + I3 = 0.

We apply the loop rule for the two loops indicated in the diagram:
loop 1:  – ε + I1R1 + I2R2= 0;
loop 2:  – I2R2 – I3R3 + ε = 0.

When we combine these equations, we get
I1 = R3ε/(R1R2    + R1R3 + R2R3) ,
I2 = (R1 + R3)ε/(R1R2 + R1R3 + R2R3) ,
I3 = R1ε/(R1R2 + R1R3 + R2R3) .

23. With identical batteries, the terminal voltage and the current through each battery are the same.
When the batteries are connected in parallel, the terminal voltage is the voltage across the resistance,
so we have

∑Ii = NIi = Ia;
Vab = ε – Iir = IaR.

If we eliminate Ii from these equations, we get

Ia = ε/[R + (r/N)] .
When the batteries are connected in series, the current through each battery is the current through the
resistance, so we have

∑Vi = NVi = Vcd; ��(ε – Ibr) = IbR, which gives

Ib = ε/[r + (R/N)] .
In general, R will be much greater than r, so Ib will be greater than Ia.

24. We assume that the current going to point C is negligible.  If I is the current through the resistors, which
are in series, we have

VAB = I(R1 + R2), and VCD = IR2.
If we eliminate I, we get

VCD = [R2/(R1 + R2)]VAB .

25. We combine R2 and RL , which are in parallel:
1/R = 1/R2 + 1/RL, which gives R = R2RL/(R2 + RL) .

We now have a single-loop circuit, so the current is
I = ε/(R1 + R).

The voltage across the load is the voltage across R:
VL = IR = εR/(R1 + R).

When we use the expression for R, we get
VL = εR2RL/[(R1R2 + R1RL + R2RL)]

= (10 V)(3.3 kΩ)RL/[(3.3 kΩ)(3.3 kΩ) + (3.3 kΩ)RL + (3.3 kΩ)RL]
= 33RL/(10.9 + 6.6RL) V, with RL in kΩ.

For the given loads, we have
V20 kΩ = (33)(20 kΩ)/[10.9 + 6.6(20 kΩ)] = 4.62 V,   ∆V = 0.38 V;
V200 kΩ = (33)(200 kΩ)/[10.9 + 6.6(200 kΩ)] = 4.96 V,   ∆V = 0.04 V;
V2 MΩ = (33)(2 × 103 kΩ)/[10.9 + 6.6(2 × 103 kΩ)] = 4.996 V,  ∆V = 0.004 V.
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26. From the diagram, we have
I1 = Vac/R1 = ε/R;
55 × 10– 3 A = (2.8 V)/R,

which gives  R = 51 Ω .

27. We can consider point a to be along the top and point b to be
along the bottom, so the conservation of current gives

∑Iin = 0;
junction a:  I1 – I2 – I3 – I4 = 0;
junction b:  I2 + I3 + I4 – I1 = 0.

Thus there is only one independent junction.
For the three loops indicated on the diagram, we have

loop 1:  – I1R – I2R – I1R + ε = 0;
loop 2:  + I2R – I3R = 0;
loop 3:  + I3R – I4R = 0.

The solution of these four equations gives
I1 = 3ε/7R , I2 = I3 = I4 = ε/7R.

28.  For the conservation of current, we have
junction a:  I – I1 – I2 = 0;
junction b:  I1 – I3 – I4 = 0;
junction d:  I4 + I5 – I = 0.

For the three loops indicated on the diagram, we have
loop 1:  – I1R – I4R + ε = 0;
loop 2:  – I2R + I3R + I1R = 0;
loop 3:  – I3R – I5R+ I4R = 0.

When we solve these equations, we get
I3 = 0,  I1 = I2 = I4 = I5 = ε/2R,  I = ε/R.

Because the current through the battery must be
I = ε/Req�, we get  Req = R.

From the symmetry of the resistance network, we know that there can be no current through the central
resistor, which could be removed.  Then we would have two pairs of series resistors in parallel, which
gives Req = R.
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29 . (a ) For the conservation of current at point a, we have
∑Iin = 0;
I1 + I2 – I3 = 0.

For the two loops indicated on the diagram, we have
loop 1: ε2 – I2R1 – I3R3 – I2R4 = 0;

+ 9 V – I2(100 Ω) – I3(50 Ω) – I2(200 Ω) = 0;
loop 2: ε1 – I1R2 – I3R3 – I2R5 = 0;

+ 6 V – I1(150 Ω) – I3(50 Ω) – I1(250 Ω) = 0.
When we solve these equations, we get

I1 = 0.0106 A, I2 = 0.0242 A, I3 = 0.0348 A.
The power dissipated in the 50-Ω resistor is

P3 = I3
2R3 = (0.348 A)2(50 Ω) = 0.0605 W = 60.5 mW.

(b) If the terminals on the 6-V battery are reversed, we have the same equations, except for the
sign of ε1:

I1 + I2 – I3 = 0.
loop 1: ε2 – I2R1 – I3R3 – I2R4 = 0;

+ 9 V – I2(100 Ω) – I3(50 Ω) – I2(200 Ω) = 0;
loop 2: – ε1 – I1R2 – I3R3 – I2R5 = 0;

– 6 V – I1(150 Ω) – I3(50 Ω) – I1(250 Ω) = 0.
When we solve these equations, we get

I1 = – 0.0165 A, I2 = 0.0281 A, I3 = 0.0116 A.
The power dissipated in the 50-Ω resistor is

P3 = I3
2R3 = (0.0116 A)2(50 Ω) = 0.0068 W = 6.8 mW.

30. (a) The total resistance of the circuit is R = 20(2 Ω) + 80 Ω = 120 Ω, while the total emf is
ε = 20(12 V) = 240 V. The current is then
I = ε/R = 240 V/120 Ω = 2.0 A.

(b) Now the total resistance of the circuit is
R = (2 Ω)/20 + 20 Ω = 20.1 Ω, while the total emf is
ε = 12 V. The current is then
I = ε/R = 12 V /20.1 Ω = 0.60 A.

(c) Now the total resistance of the circuit is
R = 5(2 Ω)/4 + 40 Ω = 42.5 Ω, while the total emf is
ε = 5(12 V) = 60 V. The current is then
I = ε/R = 60 V /42.5 Ω = 1.4 A.
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31. (a ) We can reduce the circuit to a single loop by
successively combining parallel and series
combinations.
We combine R3 and R4 , which are in parallel:

1/R5  = 1/R3 + 1/R4

       = 1/(100 Ω) + 1/(50 Ω),
which gives R5 = 33.3 Ω.

We combine R1 and R2 + R5 , which are in parallel:
1/R6  = 1/R1 + 1/(R2 + R5)
       = 1/(100 Ω) + 1/(20 Ω + 33.3 Ω),
which gives R6 = 34.8 Ω.

Because Vab = 6 V, we find I2 from
I2 = Vab/(R5 + R2) = (6 V)/(33.3 Ω + (0 Ω) = 0.113 A.

We can now find Vcb from
Vcb = I2R5 = (0.113 A)(33.3 Ω) = 3.75 V.

The current through the 50-Ω resistor is
I4 = Vcb/R4 = (3.75 V)/(50 Ω) = 0.075 A.

(b) For the conservation of current, we have
junction a: I – I1 – I2 = 0;
junction c: I2 – I3 – I4 = 0.

For the three loops indicated on the diagram, we have
loop 1: ε – I1R1 = 0;

6 V – I1(100 Ω) = 0;
loop 2: I1R1 – I2R2 – I3R3 = 0;

I1(100 Ω) – I2(20 Ω) – I3(100 Ω) = 0;
loop 3: – I3R3 + I4R4 = 0;

– I3(100 Ω) + I4(50 Ω) = 0.
When we solve these equations, we get

I1 = 0.060 A, I2 = 0.113 A, I3 = 0.038 A, I4 = 0.075 A.
Thus, the current through the 50-Ω resistor is 0.075 A.

32. For the conservation of current at point a, we have
∑Iin = 0;
I1 – I2 – I3 = 0;
I1 – I2 – 0.1 A = 0.

For the two loops indicated on the diagram, we have
loop 1:  ε1 – I1R1 – I3R3 = 0;

+3 V – I1(5 Ω) – (0.1 A)R3 = 0;
loop 2:  ε2 + I3R3 – I2R2 = 0;

+6 V + (0.1 A)R3 – I2(20 Ω) = 0.
When we solve these equations, we get

I1 = 0.44 A, I2 = 0.34 A, and R3 = 8 Ω .
If I3 = – 0.1 A, the equations become

I1 = I2 – 0.1 A;
+3 V – I1(5 Ω) – (– 0.1 A)R3 = 0;
+6 V + (– 0.1 A)R3 – I2(20 Ω) = 0.

When we solve these equations, we get       I1 = 0.28 A, I2 = 0.38 A, and     R3 = – 16 Ω.
Because we cannot have a negative resistance, it is not possible to have I3 = – 0.1 A.
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33. For the conservation of current at point b, we have
∑Iin = 0;
I – I1 – I2 = 0;

For the two loops indicated on the diagram, we have
loop 1:  ε1 – I1r1 – IR = 0;

+12 V – I1(0.1 Ω) – I(5 Ω) = 0;
loop 2:  ε2 + I2r2 – IR = 0;

+10 V –  I2(10 Ω) – I(5 Ω) = 0.
When we solve these equations, we get

I1 = 2.52 A, I2 = – 0.17 A, and  I = 2.35 A.
The current through the load resistor is 2.35 A.
ε1 supplies  2.52 A;   ε2 supplies  no current,  it is being charged by ε1.

34. On the diagram, we show the potential difference applied
between points A and B.  Because all of the resistors are the
same, symmetry means that the three currents leaving
point A must be the same three currents entering point B.
This means that there is no current in the resistor between
points C and D, which can be removed without changing the
currents.  When we redraw the circuit, we see that we have
three parallel branches between points A and B.  The currents are

I1 = VAB/R = (4 V)/(1 Ω) = 4 A;
I2 = I3 = VAB/(R + R) = (4 V)/(1 Ω + 1 Ω) = 2 A.

The power dissipated in each of the resistors is
PAB = I1

2R = (4 A)2(1 Ω) = 16 W;
PCD =  0;
Pall others = I2

2R = (2 A)2(1 Ω) = 4 W.

35. In the original configuration, there are no series or parallel
combinations; however, from the symmetry of the resistors,
we know that the current that goes into point A must split
equally to go through the cube.  The three points on the other
side of the three resistors must be at the same potential, so we
can connect them with a wire without changing the currents.
In the same way, the other three corners of the cube must be at
equal potentials, so we can connect them with a wire.
From the redrawn circuit, we see that we have three parallel
combinations, two of which are the same:

1/R1 = 1/R3 = (1/R) + (1/R) + (1/R),
which gives R1 = R3 = R/3;

1/R2 = (1/R) + (1/R) + (1/R) + (1/R) + (1/R) + (1/R),
which gives R2 = R/6;
We combine these three in series to get

Req = (R/3) + (R/6) + (R/3) = 5R/6.
The current in the equivalent resistor is

I = V/(5R/6) = 6V/5R.
The current in a resistor connected to point A or point B is

I1 = I3  = I/3 = 2V/5R .
The current in each of the other resistors is

I2 = I/6 = V/5R.
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36. (a ) For n = 1, we have two resistors in series:
R1 = R +  R =  2R .

(b) For n = 2, we have a resistor in series with
a parallel combination of a resistor and
resistance R1:

R2 = R +  R1R/(R1 + R)
= R +  2RR/(2R + R) = 5R/3.

(c) For n = 3, we have a resistor in series with
a parallel combination of a resistor and
resistance R2:

R3 = R +  R2R/(R2 + R)
= R +  (5RR/3)/(5R/3 + R) = 13R/8.

(d) For n rungs, we have a resistor in series with
a parallel combination of a resistor and resistance Rn – 1:

Rn = R +   Rn – 1R/(Rn – 1 + R).
In the limit of n → ∞, we have

Rn = Rn – 1 = Req , which gives
Req = R +  ReqR/(Req + R), which reduces to  Req

2 – RReq – R2 = 0.
The solutions to this quadratic equation are

Req = !(1 ± √5)R.
Because the resistance cannot be negative, we have Req = !(1 + √5)R = 1.618R .

37. The equivalent resistance of the circuit is R = R1RV/(RV + R1) + R2 ,  where RV  is the internal resistance
of the voltmeter.  The current in the circuit is then

I = ε/ R = ε/[ R1RV/(RV + R1) + R2] .
The voltage across R2 is V2 = IR2 , so the voltage across R1 is

 V1 = ε – V2 = ε – IR2 = ε – ε R2/[ R1RV/(RV + R1) + R2].
Plug in ε = 6 V, R1 = 1400 Ω, R2 = 10 kΩ, and RV  = 200 kΩ to obtain

V1 = 0.732 V   (for RV  = 200 kΩ).
If RV is changed to 10 MΩ, then from the formula above we get

V1 = 0.737 V   (for RV  = 10 MΩ).

38. We have a single-loop circuit of the battery and the voltmeter.  Because the terminal voltage of the
battery is the voltage across the voltmeter, we have

V terminal = IRV;
1.45V  = I(60 × 103 Ω), which gives I = 2.4 × 10– 5 A.

For the battery, we have
V terminal = ε – Ir;

1.45V = 1.5 V – (2.4 × 10– 5 A)r, which gives  r = 2.1 kΩ .

39. Without the ammeter in the circuit, we have
I = ε/R.

With the ammeter in the circuit, we have
I ′ = ε/(RA + R).

When we combine these two equations, we get
I ′/I = R/(R + RA) = 1/(1 +  RA/R) ˛ 1 – (RA/R), if  RA/R << 1.

To get the desired accuracy, we want I ′/I ≥ 0.999, or  RA/R ≤ 0.001.
The maximum allowable value of RA is determined by the smallest value of R:

RA = 0.001(10 Ω) = 0.010 Ω .

P1

1 2 n – 1 n

P2



Fishbane, Gasiorowicz, and Thornton

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 27-13

40. The voltmeter is placed in parallel with the resistor, so the equivalent resistance is
1/Req = 1/R +  1/RV , which becomes
Req/R = RV/(R + RV) = 1/(1 +  R/RV) ˛ 1 –  R/RV , if R/RV << 1.

To get the desired accuracy, we want  Req/R ≥ 0.999, or R/RV  ≤ 0.001.
The minimum allowable value of RV is determined by the largest value of R:

RV = R/0.001 = (5 × 103 Ω)/0.001 = 5 × 106  Ω .

41. We find the equivalent resistance for R and RV , which are in parallel, from
1/Req = 1/R  + 1/RV , which gives Req = RRV/(R + RV) .

(a ) Req = (10 Ω)(105 Ω)/(10 Ω + 105 Ω) ˛ 10 Ω .

(b) Req = (105 Ω)(105 Ω)/(105 Ω + 105 Ω) = 5 × 104 Ω .
(c) Req = (100 × 106 Ω)(105 Ω)/(100 × 106 Ω + 105 Ω) ˛ 105 Ω .
The equivalent resistance has the value of the resistor when RV >> R.

42. The resistance of the voltmeter is RV = R + RA.  The maximum current through the voltmeter is the
maximum current through the ammeter, so we have

Vmax = Imax(R + RA) ;
3 V = (5 × 10– 3 A)(R + 1.8 × 10–4 Ω), which gives
R = 0.6 kΩ .

43. The equivalent resistance of the circuit is R + r, where we assumed that the internal resistance of the
voltmeter is nearly infinity.  The current in the circuit is then

I = ε/(R + r).
The voltage across R, i.e., the reading of the voltmeter, is then   

 V = ε – Ir = ε – εr/( R + r) = εR/( R + r).
For  R = 20 Ω we have V = 23 V, and for R = 5 Ω we have V = 16 V; so

23 V = ε (20 Ω)/(20 Ω + r);
16 V = ε (5 Ω)/(5 Ω + r).

Solve these two equations to obtain ε = 26.9 V and r = 3.41 Ω. Thus for R = 50 Ω
V  = εR/( R + r) =  (26.9 V)(50 Ω)/(50 Ω + 3.41 Ω) = 25 V.

44. To be able to accommodate 2 × 10– 3 A, which is 10 times the current that causes the galvanometer to
fully deflect, we need to add a resistor of resistance R in parallel to it to route 90% of the current,
leaving only 10% of 2 × 10– 3 A, or 2 × 10– 4 A, to flow through the galvanometer. If the full-deflection
voltage is V then

V = IGRG = IRR;
(2 × 10– 4 A)(20 Ω) = [(90%)(2 × 10– 3 A)]R;  which yields
R = 2.2 Ω.

So one needs to connect a 2.2-Ω resistor in parallel with the galvanometer.
To change the full-deflection potential to V’= 0.2 V, place a resistor of resistance R’ in series with the
galvanometer. Upon full deflection the current in both of them is IG = 2 × 10– 4 A, so

V’= IG (RG + R’);
0.2 V = (2 × 10– 4 A)(20 Ω + R’); which yields
R’ = 0.98 kΩ.

So one needs to connect a 0.98-kΩ resistor in series with the galvanometer.
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45. Because the shunt resistor is in parallel with the galvanometer, we have
Vmeter = IGRG = IsRs , which gives RG/Rs = Is/IG.

We use the junction at one side of the meter to find the total current through the meter:
I = IG + Is = IG(1 + Is/IG) = IG(1 + RG/Rs) .

46. We combine R2 and RV , which are in parallel:
1/R3 = 1/R2 + 1/RV , which gives R3 = R2RV/(R2 + RV) .

For the resulting single-loop circuit, we have
I = ε/(R1 + R3) = ε/[R1 + R2RV/(R2 + RV)].

The output voltage is
Vout = IR3 = {ε/[R1 + R2RV/(R2 + RV)]}[R2RV/(R2 + RV)]

   = εR2RV/(R1R2 + R1RV + R2RV)
   = ε/(1 + R1/R2 + R1/RV) .

For the two voltmeters, we have
RV = 500 kΩ:

Vout = (1200 V)/[1 + (30 kΩ)/(50 kΩ) + (30 kΩ)/(500 kΩ)] = 723 V.
RV = 100 MΩ:

Vout = (1200 V)/[1 + (30 kΩ)/(50 kΩ) + (30 kΩ)/(100 × 103 kΩ)] = 750 V.

47 . When there is no current through the galvanometer,
we have VBC = 0,  a current I1 through R and R1 , and
a current I2 through R2 and R3.  Thus we have

VAD = I1(R + R1) = I2(R2 + R3),    and
VAB = VAC   or   I1R = I2R2.

When we divide these two equations, we get
(R + R1)/R = (R2 + R3)/R2 ,    or
1 + (R1/R) = 1 + (R3/R2), which gives R1/R = R3/R2.

The unknown resistance is
R = R1R2/R3 .

48. The voltage read by the voltmeter is also the voltage
across Rx and the ammeter:

V = I(RA + Rx), which gives
Rx = V/I  – RA .

We will have Rx = V/I       when RA << V/I (when RA << Rx) .

49. Because the voltmeter and Rx are in parallel, their equivalent resistance is
Req = RVRx/(RV + Rx) .

The voltage read by the voltmeter is also the voltage across Req:
V = IReq  = IRVRx/(RV + Rx), which gives
Rx = (V/I)/(1 – V/IRV) .

We will have Rx = V/I when V/IRV  <<  1, or
RV  >>  V/I  (when RV  >> Rx) .
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50. We find the resistance from
time constant = RC;
5 × 10– 4 s = R(16 × 10– 6 F), which gives R = 31 Ω.

51. We find the capacitance from
time constant = RC;
2.0 s = (105 Ω)C, which gives       C = 2.0 × 10– 5 F = 20 µF.

52. We use the definitions of R and C to find the units of RC:
RC = (V/I)(Q/V) = Q/I = coulomb/(coulomb/second) = second.

For the given data, we have
R1C1 = (5 × 106 Ω)(30 × 10– 6 F) = 150 s ;
R2C2 = (8 × 103 Ω)(3 × 10– 6 F) = 24 × 10– 3 s = 24 ms;
R3C3 = (20 Ω)(50 × 10–12 F) = 1 × 10– 9 s = 1 ns.

53 . With the time constant as the flash time, we have
time constant = RC;
(1/500) s = R(600 × 10– 6 F), which gives R = 3.3 Ω .

54. From Q = Cε(1 – e – t/RC), we obtain
dQ/dt = Cε[– (– 1/RC)e – t/RC] = (ε/R)e – t/RC.

We substitute these equations into
ε –  R(dQ/dt) –  Q/C;
ε –  R(ε/R)e – t/RC  –  (Cε/C)(1 – e – t/RC) = ε –  εe – t/RC – ε + εe – t/RC = 0,

so Eq. (27–21) is satisfied.

55. From Q = Q0e  – t/RC, we obtain
dQ/dt = (– Q0/RC)e – t/RC.

We substitute these equations into
R(dQ/dt) + Q/C;
(–RQ0/RC)e – t/RC) +  (Q0/C)e – t/RC = 0, so Eq. (27–25) is satisfied.

56. (a ) The time constant is
RC = (3 × 106 Ω)(350 × 10– 6 F) = 1050 s.

(b) For the charge on the capacitor, we have
Q = Q0(1 – e – t/RC) = 0.90Q0 , which gives e – t/RC = 0.10.

For the charging current, we have
I = (ε/R)e – t/RC = [(50 V)/(3 × 106 Ω)](0.10) = 1.7 × 10– 6 A.

57. Because there is no internal resistance in the battery, the potential
difference across R2 and across the capacitor branch is ε.  The current in
R2 is constant:

I2 = ε/R2.
The charging current in the capacitor branch is

   I1 = (ε/R1)e – t/R1C.

From the junction, the current in the battery is
   Ibattery = I1 + I2 = (ε/R1 )e – t/R1C + (ε/R2).
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58. The time constant of the circuit is
RC = (350 × 103 Ω)(20 × 10– 6 F) = 7.0 s.

The charging current in the resistor is
I = (ε/R)e –t/RC, so the voltage across the resistor is
V = IR = εe – t/RC,
     = (200 V)e –(4.0 s)/(7.0 s) = 113 V.

The charge on the capacitor is
Q = Cε(1 – e –t/RC)
     = [(20 × 10– 6 F)(200 V)][1 – e –(4.0 s)/(7.0 s)]  = 1.7 × 10– 3 C = 1.7 mC.

59 . The possible capacitance values that we have are
C1 = C2 = 5 µF;
Cparallel = C1 + C2 = 5 µF + 5 µF = 10 µF;
Cseries = C1C2/(C1 + C2) = (5 µF)(5 µF)/[(5 µF) + (5 µF)] = 2.5 µF.

We need to combine the resistors to produce one of the following resistance values:
Ra = RC/C1 = (1 × 10– 3 s)/(5 × 10– 6 F) = 200 Ω;
Rb = RC/Cparallel = (1 × 10– 3 s)/(10 × 10– 6 F) = 100 Ω;
Rc = RC/Cseries = (1 × 10– 3 s)/(2.5 × 10– 6 F) = 400 Ω;

If we connect the 300-Ω resistors in parallel, we get
R3 = R2R2/(R2 + R2)
      = (300 Ω)(300 Ω)/[(300 Ω) + (300 Ω)] = 150 Ω.

We see that we can produce Rc by putting this combination in series with the 250-Ω resistor:
Rc = R1 + R3 = 250 Ω + 150 Ω = 400 Ω.

Thus we connect the 300-Ω resistors in parallel with each other and in series with the 250-Ω resistor
and the two capacitors.

60. For a parallel-plate capacitor with separation d, we have
C = κε0A/d.

For the resistance of the dielectric, we have
R = ρd/A.

The time constant is
RC = (ρd/A)(κε0A/d) = κε0ρ, which is independent of the area and separation.

61. We use the result of Problem 62 to find the time constant:
RC = κε0ρ

       = (3.2)(8.85 × 10–12 F/m)(2 × 101 4 Ω · m) = 5.66 × 103 s.
As the capacitor discharges, when 70% of the charge on the plates has leaked away, we have

Q = Q0e  – t/RC = 0.30Q0 , which gives
e  – t/RC = 0.30;   t/RC = 1.2.

The time for 70% of the charge to leak away is
t = 1.2RC = (1.2)(5.66 × 103 s) = 6.8 × 103 s  (1.9 h) .
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62. When the switch is closed, charge will move from C1 to C2;
with a variable current I in the single loop or series circuit:

I = – dQ1/dt = dQ2/dt.
With the same current in the two capacitors, they are connected in series.
We find the equivalent capacitance of the circuit from

1/C = 1/C1 + 1/C2 , which gives
C = C2C1/(C1 + C2) .

The time constant of the circuit is RC.
Q1 , the charge on C1 , will decrease and Q2 , the charge on C2 ,
will increase until the potential difference will be the same across
both capacitors, at which point the current becomes 0.
The charges will have reached their final value, which we find from

V1 = V2 ;   or
Q1f/C1 = Q2f/C2.

Because there has been no loss of charge, we have Q0 = Q1f + Q2f .
When we combine these two equations, we get

Q1f = Q0C1/(C1 + C2),  and
Q2f = Q0C2/(C1 + C2) .

Capacitor C2 will charge just like a single capacitor from 0 to its final value Q2f , so we have
Q2 = [Q0C2/(C1 + C2)](1 – e – t/RC) .

At any time the total charge is conserved and equal to the initial charge Q0.  We find the charge on C1

as a function of time from
Q1 = Q0 – Q2 , which gives
Q1 = [Q0C1/(C1 + C2)] + [Q0C2/(C1 + C2)]e  – t/RC .

Note that at t = 0, this gives Q0 and after a long time it gives Q1f .
[It is also possible to solve the circuit equation, obtained by adding the potential drops around the loop:
Q1/C1  – IR –  Q2/C2 = 0.  When the current is put in terms of the rate of change of the charge and the
conservation of charge is used, a differential equation is obtained.  The solution is the given equations.]

63. The power used by each appliance is Pi = IiV, so the currents draw from the main supply are
I1 = P1/V = (50 W)/(120 V) =  0.417 A;
I2 = P2/V = (60 W)/(120 V) =  0.500 A;
I3 = P3/V = (20 W)/(120 V) =  0.167 A.

64. (a ) The current in the circuit will be clockwise.
For the single loop, we have

I = (ε1 – ε2)/R

   = (12 V – 6 V)/(20 Ω) =  0.30 A.
(b) The rate at which energy is being stored in the smaller

battery is
P = Iε2 = (0.30 A)(6 V) =  1.8 W.

(c) The rate of energy dissipation in the resistor is
P = I 

2 R = (0.30 A)2(20 Ω) = 1.8 W.
Note that the sum of the answers to parts (b) and (c) is the rate at which energy is being provided
by the larger battery, 3.6 W.
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65. Because the power dissipated in the effective resistance is the sum of the powers dissipated in the
individual resistors, we have

Peq = ∑Pi = nPi ;
30 W = n(5 W), which gives n = 6 resistors.

If we connect the six resistors in parallel, we have
1/Req = ∑(1/Ri) = n/Ri ;
1/(100 Ω) = 6/Ri , which gives Ri = 600 Ω.      We can connect six 600-Ω resistors in parallel .

If we connect the six resistors in series, we have
Req = ∑Ri = nRi ;
100 Ω = 6Ri , which gives Ri = 16.7 Ω.  We can connect six 16.7-Ω resistors in series.

To have the same power dissipated in each resistor requires that the
currents be the same, which means there must be symmetry in the
arrangement of the resistors.
If we connect two series resistors in parallel with two more sets of
two series resistors, we have

1/Req = 1/2Ri  + 1/2Ri  + 1/2Ri  = 3/2Ri ;
1/(100 Ω) = 3/2Ri , which gives Ri  = 150 Ω.

We can connect two series 150-Ω resistors in parallel with two more
sets of two series 150-Ω resistors.

If we connect three series resistors in parallel with a set of three series
resistors, we have

1/Req = 1/3Ri  + 1/3Ri  = 2/3Ri ;
1/(100 Ω) = 2/3Ri , which gives Ri  = 66.7 Ω.

We can connect three series 66.7-Ω resistors in parallel with three series 66.7-Ω resistors.

66. The current for this single loop is
I = ε/(R + r).

The power delivered to the external resistor is the power dissipated in the resistor:
Pext = I 

2 R = ε2R/(r + R)2.
To find the value of R that maximizes the power, we set dPext/dR = 0:

dP/dR = [ε2/(r + R)2] – [2ε2R/(r + R)3] = ε2(r – R)/(r + R)3 = 0, which gives  r = R.

67. (a) The short-circuit current (when there is no load) provided by the battery is
I = ε/r = 12.6 V/0.05 Ω = 0.25 kA.

(b) The voltage V across the battery terminal during recharging must overcome both ε and the internal
resistance of the battery:

V = ε + Ir = 12.6 V + (2.5 A)(0.05 Ω) = 12.7 V.
(c) Energy stored =  εIt = (12.6 V)(2.5 A)(10 h)(3600 s/h) = 1.1 × 106  J .

68. If the batteries are in parallel then the equivalent resistance of the circuit is R + r/n, and the emf is ε.
The current is

Iparallel = ε/(R + r/n) = nε/(nR + r).
If the batteries are in series then the equivalent resistance of the circuit is R + nr, and the emf is nε. The
current is

Iseries = nε/(R + nr).
If we compare Iparallel with Iseries, it is clear that Iparallel > Iseries if

nR + r < R + nr,   or  R < r.
Similarly, if R > r then Iseries > Iparallel.
Therefore, to maximize the current, put the batteries in series if R > r and in parallel if R < r .
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69. For this single-loop circuit, we have
I = ε/(R + r) = ε/[R + (α + βI )], which is a quadratic equation for I:   βI 

2 + (R + α)I – ε  = 0.
The positive solution is

I = {– (R + α) + [(R + α)2 + 4βε]1/2}/2β .
The ratio of power delivered to the load to the power dissipated in the battery is

PR/Pr = I 
2R/[I 

2(α + βI )] = R/(α + βI ).
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70. Using P = V2/R, we find the two resistances:
R1 = V2/P1      and      R2 = V2/P2 .

The equivalent resistance for the series connection is
Rs = R1 + R2 = (V2/P1) + (V2/P2) = V2(P1 + P2)/P1P2.

The power generated is
Ps = V 

2/Rs = P1P2/(P1 + P2) .
The equivalent resistance for the parallel connection is

Rp = R1R2/(R1 + R2) = (V4/P1P2)/(V2/P1 + V2/P2) = V 
2/(P1 + P2) .

The power generated is
Pp = V2/Rp = V 

2/[V2/(P1 + P2)] =  P1 + P2 .

71. The two heating elements in the furnace are initially connected in parallel.  The power dissipated in a
resistor is P = I2R = V 

2/R.  The resistances are
R1 = V2/P1 = (110 V)2/(1000 W) = 12.1 Ω.
R2 = V2/P2 = (110 V)2/(2000 W) = 6.05 Ω.

The power can be reduced by increasing the resistance, which means connecting them in series:
P = V2/(R1 + R2) = (110 V)2/(12.1 Ω + 6.05 Ω) = 667 W.

72. (a ) For the series arrangement, we have
Is = (ε + ε)/(R + 2r), which gives

Is = ε/(!R + r) .
(b) For the parallel arrangement, we use symmetry

to see that the current in each battery is the same.
For the junction, we have

Ip – I – I = 0,   or   Ip = 2I. 
For one loop, we have

ε – IpR – Ir = 0 = ε – IpR – !Ipr, which gives

Ip = ε/(R + !r) .
For large R: Is ˛ 2ε/R,  Ip ˛ ε/R;  so Is is larger. For small R: Is ˛ ε/r,  Ip ˛ 2ε/r;  so Ip is larger.

+

–
ε

R

r

+

–
ε

Is
r

R

+

–
ε
r

Ip+

–
ε
r

II

Series Parallel



Chapter 27:  Direct-Current Circuits

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Page 27-20

73. The devices are connected in parallel, so we have
I = PV;
Imixer = (800 W)/(120 V) = 6.67 A.
Ivacuum = (600 W)/(120 V) = 5.00 A.
Ichandelier = 10(60 W)/(120 V) = 5.00 A.

If all three devices are used at the same time, the fuse will blow.  Each bulb draws 0.50 A.  To find the
number of bulbs that can be used without blowing the fuse, we have

Imax = Imixer + Ivacuum + NIbulb ;
15 A = 6.67 A + 5.00 A + N(0.50 A),  which gives  N = 6.7 bulbs.  Thus  7 bulbs  will blow the fuse.

74. We find the maximum current through a resistor from
P1max = Imax

2R;
2 W = Imax

2(30 Ω), which gives Imax = 0.26 A.
When the three are connected in series, circuit A,
the maximum current goes through each resistor,
so we have

PAmax = 3P1max = 3(2 W) = 6 W.
When the three are connected in parallel, circuit B,
the maximum current goes through each resistor,
so we have

PBmax = 3P1max = 3(2 W) = 6 W.
In circuit C, the resistor in series has the maximum current.
From symmetry the current in the other two resistors will
be !Imax.  The maximum power is

PCmax = P1max + 2(!Imax)2R

       = P1max + !P1max = *(2 W) = 3 W.
In circuit D, the branch with the single resistor has the maximum current.  Because the total resistance
in the other branch is 2R, the current in the other branch will be !Imax.  The maximum power is

PDmax = P1max + 2(!Imax)2R

       = P1max + !P1max = *(2 W) = 3 W.

75. Normally, this circuit would have six currents, one for each
branch.  We have used the symmetry of the circuit to
reduce the number of currents to four, as shown in the diagram.
For the junction equations, we have

junction A (or D):  I – I1 – I2 = 0; (1)
junction B (or C):  I1 + I3 – I2 = 0. (2)

For the loop equations, we have
loop ACDA:  – I2R – I1R + ε = 0; (3)
loop BDCB:  – I2R + I1R – I3R = 0; (4)

When we combine Eq. (2) and Eq. (4), we find
I3 = 0     (as suggested by symmetry)    and    I1 = I2.

From Eq. (3), we get
I1 = I2 = ε/2R.

From Eq. (1), we get
I = 2I1 = ε/R.
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76. For a cylindrical wire, we have
R = ρL/A,  I = V/R = VA/ρL,  J = I/A = V/ρL = E/ρ = V/ρL,  and  P = I 

2R = I 
2ρL/A.

The two wires have the same length and area.
(a ) When the wires are in series, the currents must be the same, so we have

JAl/JCu = IAl/ICu =  1.
EAl/ECu = JAlρAl/JCuρCu = ρAl/ρCu = (2.82 × 10– 8 Ω · m)/(1.72 × 10– 8 Ω · m) = 1.64.
PAl/PCu = (I 

2ρAlL/A)/(I 
2ρCuL/A) = ρAl/ρCu = 1.64.

(b) When the wires are in parallel, the potential difference is the same, so we have
JAl/JCu = IAl/ICu = (VA/ρAlL)/(VA/ρCuL) = ρCu/ρAl =  0.61.
EAl/ECu = JAlρAl/JCuρCu = (JAl/JCu)(ρAl/ρCu) =  1.
PAl/PCu = (IAl

2ρAlL/A)/(ICu
2ρCuL/A)

= (IAl/ICu)2(ρAl/ρCu) = (ρCu/ρAl)2(ρAl/ρCu) = ρCu/ρAl =  0.61.
(c) Because the currents and areas are the same, all wires have the same current density.

For constant current, the electric field and the power loss is proportional to the resistivity.
Thus silver, with the smallest resistivity, has the weakest field and the least power loss.

77. If there is no current through the ammeter, we find the
current in the source loop from

VS – IS(R1 + R2) = 0, which gives IS = VS/(R1 + R2) .
For the loop with the unknown, we have

Vx – ISR2 = 0.
When we use the expression for IS , we get

Vx = VSR2/(R1 + R2) .

78. (a ) Immediately after the switch is closed, there is no charge
on the capacitors and thus no potential difference across them.
For the loop we have

ε – IiR1 – IiR2 = 0;
9 V – Ii(300 Ω) – Ii(1000 Ω) = 0,  which gives  Ii = 0.0069 A.

Between b and a we have
(VB – VA)i = + IiR2 = (0.0069 A)(1000 Ω) = 6.9 V.

(b) After a long time, the current will be 0.  The two capacitors are in series, with an
equivalent capacitance:

1/Ceq = 1/C1 + 1/C2 = 1/(5 µF) +  1/(2 µF),  which gives Ceq = 1.43 µF.
The final charge on either capacitor is

Q = Ceqε  = (1.43 µF)(9 V) = 12.9 µC.
Between B and A we have

(VB – VA)f = + Q/C2 = (12.9 µC)/(1.43 µF) = 6.4 V.
(c) The time constant of the circuit is

time constant  = ReqCeq = (1 kΩ + 0.3 kΩ)(1.43 µF) = 1.86 ms.
As a measure of how fast the circuit reaches a steady state, we use 10 time constants:

t = 10ReqCeq = 10(1.86 ms) = 19 ms.
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79. (a ) With the switch open, we have a series circuit of the three
resistors and the capacitor.  For the time constant we have
time constant = ReqC  = (r + R1 + R2)C

       = [(0.04 Ω) + (0.1 Ω) + (2 Ω)](10 µF) = 21.4 µs.
(b) After a long time, there will be no current in the circuit.

The battery emf will be across the capacitor:
Q = Cε = (10 µF)(240 V) = 2400 µC = 2.4 mC.

80. (a ) After a long time there will be a steady state; there
will be no current in the capacitor branch:

I5 = 0;   I1 = I3 ,   and   I2 = I4.
For the two resistor branches we have

Vf – Vd = ε  = I2(R2 + R4) ;
6 V = I2 (180 Ω + 60 Ω), which gives I2 = 0.025 A;
Vc – Va = ε  = I1(R1 + R3) ;
6 V = I1 (35 Ω + 25 Ω), which gives I1 = 0.10 A.

Because Va = Vd , we can find the relative potentials of b and e:
Vb – Ve = (Vb – Va) – (Ve – Vd) = I1R3 – I2R4

       = (0.10 A)(25 Ω) – (0.025 A)(60 Ω) =  + 1.0 V.
The charge on the capacitor is

Q = C(Vb – Ve) = (5 µF)(1.0 V) =  5 µC.
Because Vb > Ve ,  the top plate is positive.

(b) The current through the 35-Ω resistor is I1 = 0.10 A.

81. Because the emf has negligible resistance, the terminal voltage, which is the voltage across the
capacitor, is the emf V0.  The resistance of the material in the capacitor is

R = ρL/A = L/σA = d/σπr2.
(a ) We find the electric field between the capacitor plates from the potential gradient:

E = V0/d .
(b) The current density depends on the electric field:

J = σE = σV0/d.
The current is

I = JA = (σV0/d)πr2 = σπr2V0/d  = V0/R.

82. When we add another rung, as shown in
the diagram, we have the resistance R* in
parallel with a resistor, which has an
equivalent resistance of

Req = RR*/(R + R*).
This equivalent resistance is in series with
two resistors.
Because the resistance does not change, we have

R* = 2R + [RR*/(R + R*)], which gives
R*2 – 2RR* – 2R2 = 0.

The solutions to this quadratic equation are
R* = (1 ± √3)R.

Because the resistance cannot be negative,
we have

R* = (1 + √3)R = 2.732R .
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