1. General Relativity in the Large

54 e

e can give an intuitively appealing, if simplistic, .
terpretation of the probability distributions for sponlane}:)o%s.lg[ndf:z)trlrrt)}::atl)]célcill}]:;n()::), '] he crux of
this interpretation is the concept of a fl.m(‘iam'ental'pfo abiity of i » hJUmp down
one level in the chain associated with emission 1n a given mode. W.e call it p. mu§l Lp‘cnd on the
mode, but we shall assume it is identical for spontgneous and stimulated scattcrmg.. '1 he pr()ha.
bility for spontaneous emission of 7 quanta in the given mode must equal the prok?aplllty of n suc-
cess{\'e jumps, p7, times the probability no furt.her'Jump takes place, 1 — p. This is of the same
form as our earlier result (4.11) with the identification p = e~A.

Now consider stimulated emission due to n incident quanta. The probability that the black
hole makes exactly j, jumps down due to the influence of the ith incident quantumis (1 — e #)e ™,
The incident quanta are assumed to act independently, so we multiply these factors to get (1 —
e-P)re-, where j is the sum of all the j,. We must also multiply this factor by the number of ways
that ;j indistinguishable emitted quanta can be partitioned into n classes, one for each of n in-
distinguishable incident quanta, in order to take care of Bose-Einstein statistics. We get exactly
the expression (4.24) for the probability of stimulated emission of j quanta due to » incident ones.

Thus our simple viewpoint provides a unified treatment of spontaneous and stimulated emis-
sion in terms of a single transition probability e-#. From this point of view the fundamental quan-
tity is e~#, not I'. (Scattering is described by its own scattering probability 1 — I,.) Only a deeper
theory will be able to ascertain the value of the approach presented here, but it is certainly a
suggestive one.

Tosether with this physical picture on

Black Hole Mass Distribution

We are accustomed to regard a black hole in a stationary state as having definite M, Q, and L.
But the Hawking radiation denies this comfortable idea. Since the black hole emits quanta accord-
ing to a probability distribution, the change in the hole’s mass (and charge and angular momen-
tum) is not known sharply, and neither can the M, Q, and L after emission. A radiating black hole
must thus be described by a statistical distribution over M, Q, and L with certain dispersions. Yet
all th‘eor.etical work indicates that it makes sense to think of M, O, and L as well defined. Hence
the distribution must be a sharp one about mean values M, O, L that will play the role of effective
mass, c,tharge, and angular momentum of the hole.
S]ightltr;sfc;l::;:lyagi ;ntefre\;; }:o finfi ogt what‘ ‘the distribution looks like. This is possible by way of a
that M. O and I 0 eeler’s dchum a black hole has no hair’’*° to conform with the fact
stipula;e tilat M, S,reaggtgr;:v &Sfcisely. There is little doubt th.a.t the principle must be held.to
external properties of the hole. Let r:ly e deduce e £ SOy, DISiHbIGGn that detem']me

: s then deduce the form of the distribution. To keep things

simple I shall only conside ithO = 7 i istri
on for ol aloZe. r the case with 0 = Z = 0 and concentrate on the (marginal) distribu-

We designate the distribution

must satisfy by P(M,M) and regard it as continuous for convenience. It

S PM MydM = 1 (4.40)
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S MPWM,Mydm = 77 . (4.41)

Let the black_hOlf:'radiate Over a short time and emit a representative sample of quanta in all
nodes (including different species of particles) according to the distributions p,,(n) like (4.11) and

its fermion ana?og,f' The new distribution of the hole’s mass after emission shall be given by the
composite distribution

&= {Z PM + 3 ng, M) [1p,n) (4.42)
n} i i

where the product is over all modes i emitted, and the sum over {n} means a sum over all possible

sets of occupation numbers n.. In (4.42) we take the probability that the hole originally has an ex-

cess energy ?._.n,s,- over M, multiply it by the probability (the I1 p,,) of one possible event by which it

may radiate just this excess, and sum over all possible radiation events, and over all possible excess

energies. Now let us expand P in (4.42) in powers of 'Zn,s,. to second order. We get

2 ——

O P, D nnge (4.43)

~ — Fo) —
P = PMM) + —— PM,i1) - Sig, + 1
o M) Z )

where bars indicate averaging with respect to the distribution p_. Since nn; = nn, for i # j, (4.43)
can be put in the more convenient form [also correct to O(n2e?)]

2

P =PM - AM, M) +% 7 PMM) - s, (4.44)

where
AM = -2 fg, , (4.45)
st = (- A . (4.46)

!
Clearly AM is the change in the mean mass of the hole, while s* is the variance of the emitted
*Mergy, which must equal the change in the variance

ot = [(M — My P(M,M)dM (4.47)

o

of M. By assumption o? can only depend on M, so we can write s* = (do’/dA?)AJ.\_/i to first o'rder.
36 by assumption P can only be P(M, M + AM) since M determines the distribution entirely.

2King the identifications in (4.44) and expanding to first order in AM, we get the equation



