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A spinning particle is described in terms of its position OtJ(r) and of an additional spin 
degree of freedom ~#(r) which is an odd clement of a Grassmann algebra. Its motion is 
described by an action which is invariant under both general reparametrizations and local 
supergauge transfornrations. For a particular realization of the canonical comnrutation re- 
lations we obtain a first quantized version of the Dirac equation in an analogous fashion 
to the way that the Klein-Gordon equation arises from the line element Lagrangian for a 
spinless particle. This procedure is extended to include internal symmetries and in this 
case the physical states turn out to be singlets under the group. 

1. Introduction 

The mot ion  o f  a relativistic string is described by tile non-linear Nambu-Goto  

Lagrangian which is propor t ional  to the area o f  the world sheet swept out  by the 

string in space-time [1 ]. This Lagrangian is the natural extension to the string of  

the line e lement  Lagrangian which describes the mot ion  of  a spinless point l ike par- 

ticle. More realistic dual models  [2] have been cons t ruc ted  where the world sheet 

of  a string is described not  only by its posi t ion @U(r, o) but  also by a fermionic  

spinor field ~bU(r, o) which is an odd e lement  o f  a Grassmann algebra. Zumino  [3] 

has used the formalism o f  superspace to construct  a non-linear Lagrangian tbr the 
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Neveu-Schwarz-Ramond model that gives both the equations of motion and the 
constraints. 

The possibility of  using Grassmann algebras in quantum mechanics has already 
been pointed out by several authors [4, 5] as a way of  introducing spin degrees of  
freedom at the classical level, and in this paper we employ this method to repre- 
sent a spinning point particle. As in the case of  the spinning string we introduce 
a fermionic variable f " ( r )  to partner the position variable # ( r ) .  The variable f " ( r )  is 
an odd clement o fa  Grassmann algebra and takes care of  the spin degrees of  freedom. 7" 
is any parameter along the world line of  the particle and V is the Lorentz index. The mo- 
tion of  thc spinning particle is describcd by an action which is invariant under both 
arbitrary rcparametrizations and local supersymmetry transformations. The inva- 
riance under r reparametrizations is rcquired by the fact that we must be able to 
choose any parameter without altering the physics of  the system [61, whilst the 
supergauge invariance is necessary to ensure that negative norm states, which may 
be induced by the time component of  flu, do not appear in the physical spectrum. 
The quantt, m theory of  this system can easily be constructed by imposing the ca- 
nonical commutation relations and we find that, in addition to furnishing a descrip- 
tion of  a Dirac particle, there is an alternative realization which leads to a bosonic 
spectrum, consisting of  one vector and two scalar states. As we have pointed out in 
a separate paper together with Deser and Zumino [7[ our Lagrangian also describes 
the interaction of  'supergravity' [81 and supermatter in one time and no space dimen- 
sions and may therefore be a good starting point for such a system in four dimen- 
sions. 

The organization of  the paper is as follows: in sect. 2 we describe in some de- 
tail the case of  a spinless particle in a way which is appropriate to generalize to the 
spinning case; in sect. 3 we construct an action for the massless spinning case inva- 
riant under reparametrizations and local supersymmetry; in sect. 4 we quantize the 
system and exhibit both the fermionic and bosonic realizations of  the commuta- 
tion relations; in sect. 5 we include in our Lagrangian minimal couplings to external 
electromagnetic and gravitational fields; in sect. 6 we treat the massive case fol- 
lowing the ideas of  Berezin and Marinov [9] whose work reached us after the com- 
pletion of  the massless case *; finally, in sect. 7, we treat the case of  an internal 
0 (2 )  symmetry starting from a complete reparametrization invariant action in a 
superspace with co-ordinates Z M = (r, 01 , 02) where Om(m = 1,2) arc odd elements 
o fa  Grassmann algebra, and we find that the resultant bosonic states are 0 (2 )  sing- 
lets, indicating that we have introduced a colour symmetry. 

* These authors do not, however, discuss the full supersymmetry of the system. 
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2. Spinless point-like particle 

The motion of  a free spinless point-like particle of mass m is described by the 
following action; 

rf 

S = m  / d r Y ,  (2.1) 

ri 

which represents the integral along the world line of the particle between the points 
¢p~(ri) and ¢pU(rf) where 7" is an arbitrary parameter. The action is invariant under 
transt'ormations of  the form 

r ~ r '  = f ( r ) ,  (2.2) 

with f a n  arbitrary function of  r. The equation of motion of tile particle is given by 

d 
dr Pu(r)  = 0 ,  (2.3) 

where 

aL 
pu = _ _  

a# 
is the momentum canonically conjugate to ~. As a consequence of the invariance 
of the action we have the following primary constraint; 

p2 _ m  2 = 0 ,  (2.4) 

which is, of course, just the mass-shell condition. It is useful to work in the proper- 
time gauge specified by 

pU = m~ u , (2.5) 

whereupon the equation of motion becomes 

= 0 ,  (2.6) 

with solution 

eJ~ = qU + pUr . (2.7) 

Finally the constraint becomes 

~= = 1. (2.8) 

The equation of motion (2.6) may be derived from the linearized Lagrangian 

L = ½m2~ 2 , (2.9) 

which is now only invariant under translations of  r. In order to extend the above 
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procedure to the spinning case, we rewrite the previous Lagrangian in a different 

way. The Lagrangian (2.9) is just the Klein-Gordon Lagrangian in one time and no 

space dimensions if we now consider ¢ to bc a field. It is well-known that the Klein- 
Gordon Lagrangian may be made generally covariant by introducing the metric 

,a where a is a fiat index and/1 a curved tensor guy or, equivalently, the vierbein field c u 
index and 

a b eurTa~ev = guy , (2.1 O) 

where r/ab is the fiat metric. In an arbitrary number of  dimensions we have 

I1 v a b  L =--  ~eeaeb3u(pOv(o ~ , (2.11) 

a It is easy to show that the corresponding action is invariant under where e - det e u. 
any general co-ordinate transformation x -+x '  = x - f (x )  if 

6 e ~ -  x a - f  Oxe u + Oufaea x , 

&b = f ~ ' a a ¢ .  (2.12) 

~a In one dimension e u = e and we have 

8e = fe; + fe , 

8fb= f ~  . (2.13) 

We will refer to e as the vierbein field although einbein would be more appropri- 
ate. 

A 'generally covariant '  Lagrangian in one dimension is now given by 

L = ~  + m 2 e  . (2.14) 

The 'cosmological '  term m 2 e  clearly does not spoil reparametrization invariance 
and has been introduced to give a finite mass to the particle. The action correspon- 
ding to (2.14) is different from (2.1) m that we now have two fields e and ~b which 
are to be varied independently.  It is straightff~rward to verily that this action is 
equivalent to the previous formulation by using the Euler-Lagrange equation for e 
and substituting back into the Lagrangian (2.14). From (2.14) we have the equa- 
tion of  motion 

d--~ = 0 (2.1 5) 

and the 'constraint '  equation for the vierbein 

~z = m 2 e  2 . (2.16) 

llencc the proper-time gauge corresponds to the choice e = I /m  whereupon we re- 
cover the equation of  motion (2.6) and the constraint (2.8). 
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It is interesting to note that the limit m ~ 0 is singular in (2.1) but not in (2.14). 
This means that for a free massless and spinless particle we cannot eliminate the 
vierbein field to write an action with only @u(r). 

3. The action for a relativistic massless spinning particle 

The spinning particle is described by its position ~b~(r) together with an additio- 
nal variable ~U(r) which commutes with 0 but anticommutes with itself, 

~u~v + qjv~u : 0 ,  (3.1) 

for any choice of  ~ and w. 
Proceeding as in sect. 2 we now construct a reparametrization invariant action by 

including the vierbein field e. The simplest Lagrangian which has this property is 
the most obvious generalization of  (2.14) and is given by 

L = 2 ( e  - i f f "  q~ . (3.2) 

This Lagrangian clearly transforms as a total derivative under reparametrizations 
if ff transforms as a scalar like ~ in (2.13). Explicitly, we find 

d 
6L = d-~ ( fL ) ,  (3.3) 

so that the corresponding action is invariant. Because of  the time component of the 
field ~u there is a possibility that negative norm states may appear in the physical 
spectrum. In order to decouple them we require an additional invariance and, in- 
spired by the Neveu-Schwarz-Ramond model, it seems natural to demand invariance 
under local supergauge transformations. This can be done by introducing a fermio- 
nic counter part, X, to the vierbem field and writing the following Lagrangian 

I [~  2 i ' ) 
L = 2 \ e  - iqJ~ - e × O "  qJ . (3.4) 

The action corresponding to (3.4) is now both reparametrization and supergauge 
invariant if X transforms like e under reparametrizations 

6X = f~( +f) ( ,  (3.5) 

and it" we choose the following supergauge transformations 

aq~ = ic~¢, 

- ~ ×  , 

6e = ia'x, 

,Sx = 2 a  . ( 3 . 6 )  
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Here, ot is an odct element of  a Grassmann algebra which is an arbitrary function of r. 
It is easy to check that under the transformations (3.6) the Lagrangian (3.4) is a to- 
tal derivative 

d i i a 4 "  ~) (3.7) 
6L  = d r \ 2 e  

Thus our action has the required invariances. If we now interpret ~, ~b, e and X as 
fields in one dimension we see that X is the analogue of  the Rarita-Schwinger field 
appearing in supergravity and the Lagrangian (3.4) represents the interaction be- 
tween supergravity and supermatter in one dimension. This point of  view was ex- 
panded in a separate report by Deser, Zumino and ourselves [7]. It is of  interest 
to commute two supergauge transformations (3.6) on the fields and we find 

16~,6~1 e = fd  + j~e + i s ' x ,  

[6 3, 8e, l X = f:~ + f X  + 2 a ' ,  

[ae, G I  ~ =.,'4 + i ,¢¢, ,  

- ~-~ X , ( 3 . 8 )  

where 

f i r )  - 2i~8, 
e 

or' = - ½f(r)  X. (3.9) 

Thus we find that the commutat ion of two supergauge transformations yields 
a reparametrization plus an additional supergauge transformation both of which 
are field dependent as in the case of  pure supergravity [10]. This shows that there 
is no simple gauge group structure in the action, although the invariance is still 
enough to secure good physical properties as we shall see. The Euler-Lagrange 
equations obtained by varying (3.4) with respect to ~ and ff give us the equations 
of  motion 

d-7 - iX = O,  
, / /  

2~ u - × ~ -  = 0 ,  (3 .10)  

whilst variation with respect to e and X gives us the constraint equations 

4 2 = 4 " ~ : 0 .  (3.11) 
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4. Quantization in the proper-time gauge 

Because of  the invariances of the Lagrangian (3.4) we can choose the gauge in 
which e = 1 and X = 0. This corresponds to the proper-time gauge and the equations 
of  motion become 

~u=~ =0, 

with solutions 

(4.1)  

q~u = q~ + p~7" , 

~U = constant Grassmann 4-vector,  

whilst the constraints take the form 

(4.2) 

~ = ~2 = O. (4.3) 

Eq. (4.3) corresponds to the orthogonality of  spin and velocity and the mass-shell 
condition. We may obtain (4.1) from the linearized Lagrangian 

L = ½ [~2 _ iq/~] , (4.4) 

which is now only invariant under translations in r and constant supergauge trans- 
formations. To quantize the theory we should find the fundamental Poisson brac- 
kets and then pass to the (anti-) commutators in the usual way. In trying to carry 
through this programme we find that the defining equation for the momentum con- 
jugate to ~b is itself a second-class constraint and we are obliged to use Dirac brack- 
ets. This problem has been studied extensively in ref. [5] and we find that the basic 
quantum relations are given by 

~ . , ~ l  = ig.. ,  

[~. ,~1+ = g . ~ .  (4 .5)  

One solution to the anti-commutator relation is clearly given by 

~b u = ,v/~ 7u , (4.6) 

so that, in this case, the classical Grassmann algebra passes over to the Dirac-Clifford 
algebra in the quantum regime. The momentum eigenstates of  the theory are then 
given by 

IqJ> = ]P> u(p) ,  (4.7) 

where 
^ 

IP> = e -ipq 10>, 

and Pu is the eigenvalue of  the momentum, u(p) is a Dirac spinor. The first-class 
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constraints (4.3) are imposed upon these states so we find 

P2lffphys) = 7 '  P [t~phys) = 0 .  (4.8) 

This realization of the commutation relations therefore describes a massless Dirac 
particle with the Dirac equation arising as a result of  the constraints (4.3). 

We can also satisfy the commutation relations (4.5) by setting 

1 ~u = ~ [b+u + bu ] ,  (4.9) 

with 

[b~,, b + ] + = guy ' 

b~l+ • (4.10) [bu, by]+ = [bTu, + = 0 

The ground state is then given by 

iO, p) = e-iV- 2~ IO), (4.11) 

which is a scalar state with momentum p and we can then generate the following 

further states 

b+UlO, p) ,  b+Ub+vlO, p) ,  

b+~b+'b +plO, p} ,  b+Ub+Vb+Pb+alO ' p ) .  (4.12) 

We now have to impose the constraints 

p2[~phy s ) = 0 ,  

P" bl',,~phys) = 0 .  (4.1 3) 

These tell us that all the states are massless and transverse. This restricts the 
number of  states to four as in the fermionic case and we get the following spectrum 

10, p) spin-0 particle, 

b+[0, p) photon-like particle (i = 1,2), 

and + + -  (bl b= b~b'~)10, p) antisymmetric tensor as in the closed string model [1 1 ]. 
Thus we see that our model has both a fermionic and a bosonic sector as in the 

case of  the Neveu-Schwarz-Ramond string. 

5. Interaction with external fields 

To introduce externa[ fields it is convenient to rewrite the [inearized Lagrangian 
(4.4) in terms of  superfields. We have 

S = -½i f d r  dO yUDy  u , (5.1) 
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where 

yU(r, o) = ¢)"(r) + io ~"('c) , ( 5 . 2 )  

DyU = ( ~---o + iO ~-~r) y u . (5.3) 

The constraints (4.3) may now be written in the form 

pUDv u = 0 (5.4) 

whilst the equations of  motion (4.2) are given by 

d 
dTr oyu  = O. (5.5) 

We can now couple our 'superparticle' to electromagnetism in a U(1) gauge-inva- 
riant way by coupling the electric field minimally to the 'super co-ordinate' yu  in 
the proper-time gauge. If we make the replacement flu-+ 3', u + eAu in (5.1) we find 
that the current is given by 

J U ( x )  = - ~ie f dr dO • Ix ° - y°(r ,  0)] Dy u , (5.6) 

and the interaction energy is 

f d4x JU(x) Au(x) . (5.7) 

We can perform the x and 0 integrations to find the following interaction La- 
grangian 

Le.m. : ½e[AU(qS) ~u + albuu[ ~u, ~bv]l • (5.8) 

Let us consider a plane-wave external field 

A , (  ¢) ) =eue -ik " o (5.9) 

Then, passing to the quantum theory, we can define a vertex operator for the ab- 
sorption of  a photon of  polarization e u by 

Vu(K) : ~e[p u, e-ik~'l+ -- ¼ieoUVkue -ik" ¢ (5.10) 

The operator V u is also a matrix in spin space and the first term on the right- 
hand side is multiplied by the unit matrix. The vertex is given by 

lim h - i f f ( p )  ' ~ Vu(k ) = 1 ' <p IV u (k)lp> u(p) ,  (5.11) 
M ~ O  Jr, 

where the factor I/M has been introduced in order to get a finite result as in the 
case of  the FI  formalism of the Ramond model and of  the 0 (2 )  symmetric dual 
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model [12 ]. With the introduction of  the mass we find that (5.1 1) can be conve- 
niently rewritten with the help of the Gordon decomposition in the form 

re u ( p )  7 ,  u(p) 6(4)(p ' - p - k) . (5.12) V . ( k ) - -  ' ' 

We can carry through a similar analysis for the case of  an external gravitational 
field. We define the energy-momentum tensor for the particle by 

T""(x)  = - ~i fd~ dO 6(x -.V(r, O))¢UDy" , (5.13) 

where symmetrization in the indices is to be understood. Let us consider a linearized 
external field which we may write in the form 

guy(x) = rluv + huv(x) , h small . (5.14) 

Then the interaction Lagrangian is given by 

L~rav = ½h,u(~) 4u 4 v * ~ia~huu(~) { ~  [~x, ~u] + 4~[q x, q " l  }, (5.15) 

where we have dropped terms that vanish because of  the equations of  motion. We 
again choose a plane-wave field 

huv = euue -ik " ¢ , (5.16) 

and the vertex operator is then given by 

: b.e e g 

t -  X ^ 1. h + 4t k o,x[pu, e-ik'~]+ + ark o u h ~  u, c-ikO]+ } . (5.17) 

Defining the vertex by a similar limiting procedure as in the electromagnetic case, 
we find 

Vuu(k )= lira 1 M"*O ~ ff(P') {4PuPv + ikX°uxPu + ikXouxPu } 

x u ( p ) 6 ( 4 ) ( p  ' - - p  - k )  , (5.18) 

where 

eu = ~(Pu +Pu)"  

This may be rearranged as in the electromagnetic case and we finally obtain 

Vpv(k ) = ff(p')  [T,P v + ~[uPul u(p) 6(4)(p ' - p - k ) .  (5.19) 

We thus conclude that the formalism reproduces the conventional results as requiled. 
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6. The action for a massive spinning particle 

The action for the massive case has been treated by Berezin and Marinov [9] who 
deduced a Lagrange multiplier form for it. They discussed local supersymmetry but 
did not interpret their Lagrange multipliers as a vierbein field and its fermionic 
counterpart ,  nor did they discuss variations of  these fields. In constructing the mas- 
sive case, the key point to notice is that the previous case is chirally invarianl. At 
first sight it seems difficult to change the constraint 0 .  ~ = 0 to include a mass 
since the constraint is fermionic. Because of  the chiral invariance we can, however, 
let ~b u -+ 7sYu in the quantization procedure. Thus if we introduce an additional 
(Minkowski scalar) Grassmann variable ffs, which goes over to 7s in the quantiza- 
tion procedure, this field could carry a mass in tile constraint,  We further have to 
introduce a 'cosmological '  term ½era 2 in the Lagrangian to give the mass shell con- 
dition. With this insight we can in fact find the new piece to add to the Lagran- 
gian (3.4) which transforms as a total derivative under supergauge transformations. 
This new piece is 

| . • _ 
Ls = ~em 2 + ~ldgs~b s ~im~sX, (6.1) 

where 
i 

6~b s = m~(r) +me ee~s(~bs-- }mx) (6.2) 

under local supergauge transformations. Thus the total  action in the massive case is 

s= ~ fdr {~ +em 2 -  i ( ~ -  ~s@s) 

From the equations of  motion we can in fact solve for X in terms of  ~s  and thus 
restore the balance between the number of  Bose and Fermi fields appearing in the 
theory.  However, this gives dynamics to the 'gravitational '  part (e, ~s) and so we 
retain ~s  as an independent variable. The Euler-Lagrange equations following from 
(6.3) are 

d r  - = 0 ,  

~ _  X~_ - O, (6.4) 

2~s -- mx = 0 ,  

- - -  m~b s = 0 , 
e 

_~2 ix~_ 0 • + m  2 + - . ( 6 . 5 )  

e 2 e 2 
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The equations (6.4) can be considered to be the equations of  motion and the equa- 
tions (6.5) are the constraints. As in the massless case we are allowed to choose two 
gauge conditions because of  the invariance and we set e = 1/m, X = 0. In this, the 
proper-time, gauge the equations of  motion are 

~u = ~u = b s = O, (6.6) 

while the constraints become 

~ -- ~s  = 0 ,  

~2  _ 1 = 0 .  ( 6 . 7 )  

We now pass to the fermionic quantization of  the system. In this gauge we 
have 

I. 
PC, = ~i@, PC, s = -~t@s ' P* = b = m~ . (6.8) 

As in the massless case we have to be careful because of  the appearance of  second- 
class constraints. The correct commutat ion relations are found to be 

= 

[~u,  ~v]+ = g u y ,  

[~bs, ~s]+ = - 1 .  (6.9) 

A solution to these equations is given by choosing 

~bu = x,/~YsYu , ~s  = x/}-} ')'s • (6.10) 

We see once again the Dirac-Clifford algebra emerge from the classical Grassmann 
algebra. 

Of course, Ts is not independent of  the ~,u'S but the theory is fully consistent. 
The momentum eigenstates are given by 

I~') = e -/p" gt [0} u ( p ) ,  (6.11) 

and we further have to impose the constraints (6.7) upon physical states. We obtain 

(p2  _ m 2) [1]Jphys)= ,),5( ff  _ m)[~phys)  = 0 .  (6.12) 

The last condit ion may be multiplied by 7s to recover the massive Dirac equation. 
We conclude this section showing that as in the case of  the spinless particle the 

"gravitational" fields e and X can be eliminated from the Lagrangian (6.3) by using 
the equations o f  motion for e and X- 

The equation of  motion for e is given by 

m 2 e 2 = (q~ - ½ i x ~ ) 2  , ( 6 . 1 3 )  
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where the relation (×qj)2 = 0 has been used. The equation of  motion for q~s is 

2~ s = m x .  (6.14) 

Substituting those equations in (6.3) we get the Lagrangian for a spinning particle 
expressed only in terms of  the variables ¢, ff and qJs, 

V(°' L = m  - r a f t s  ff - - ~ z q J ~ -  ~l~bs~s • (6.15) 

It is easy to check that (6.15) transforms as a total derivative under the local super- 

gauge transformations 

8~ = i~qJ, 8~0 = ~zr, (6.16) 

8 ~s = m s  , 

where 

w"= .~L a~u"  (6.17) 

One gets in fact 

8L =drrd [~i~(7r¢ + m~bs) ] . (6.18) 

7. Inclusion of internal symmetry 

In this section we extend our previous results to a system containing an internal 
O(2) symmetry.  Although this may be done in an analogous manner to the pre- 
ceeding case, it is more elegant to formulate the theory first of  all in superspace. 
In a previous publication [7] we have shown that the massless spinning particle 
may be described in a two-dimensional superspace with co-ordinates z M = (r, 0), 
and that the theory presented here corresponds to the choice of  a special gauge. 
We may repeat the arguments given in ref. [7] to derive corresponding results for 
the 0 ( 2 )  case. The appropriate superspace is now three-dimensional with co-ordi- 
nates Z M = (7", 01  , 02) where r is the ordinary bosonic co-ordinate and Om(m = 1,2) 
are two Grassmann co-ordinates. Our basic field variables are a scalar superfield 
X ( z ) ,  which is also a Minkowski four-vector, and a super-vierbein field EAM(z) *. In 
addition, we also have the inverse vierbein E M satisfying 

* Throughout this section M(A) is a curved (tangent-space) index: M = (tt, m);A = (o~ a) 
where ~(c 0 are bosonic indices taking on only one value and re(a) are fermionic indices 
taking on two values each. We also suppress the Lorentz index on X. 
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The action for the system is given by 

S : ~1 f d 3 z  E eabE ff  ~M X" E N b N  X , (7.2) 

where 1- is the (generalized) determinant of/ ' . '~. This action is invariant under gener- 
al co-ordinate transformations in superspace, 

SEAM = ~NaNEA + a M i N E S ,  

~)X = ~MaMX , (7.3) 

and also under tangent space rotations, 

~L~M = --  E~/~9 a + Elb14 e~,T, 

61:'~4 = 6X = 0 .  (7.4) 

Here the ca's are fermionic parameters and T is a bosonic parameter corresponding 
to local O(2) rotations. At this stage all the parameter ~M, ~pa, Tare arbitrary func- 
tions of  z, but we may limit the invariance to be of  the desired "supergravity" form 
by choosing the gauge in which 

E~4 = A f r O ,  E~t = A U2 ffSaM , (7.5) 

where/~A is the flat vierbein given by 

/z. u 1 , /~u = 0 ,  

- a = - (7.6) E , ,  --iOta , E ~  = ~ a  , 

and A is a scalar superfield. In order to stay in this gauge wc find that the param- 
eters must take on the following form: 

~u = a + iOm~ rn , 

~m = ~m +½0 m h + emnont  + iomon~ n , 

T = t -  iomemn~ n - ~iemnomo n ~ , 

~pa = A - l / Z ~ a  . ( 7 . 7 )  

The three remaining independent parameters a,/3,,, and t are arbitrary functions 
of  7" a'nd correspond to general co-ordinate transformations in 7.-space, local super- 
gauge transformations and local O(2) rotations, respectively. The A-field transform 
as follows: 

6 A  = ~MOMA + ~U A + iom~ m A ,  (7.8) 
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so that,  expanding the superfields, 

A = e + i o m x  'm + ~ i e m n o m o n f  ' , 

X = ~ + iOm tk 'm + ½ i e m n o m o n F  ' 

We find for the component  fields, 

8e = ab + de + i~m× ,m , 

8× ,m = a ~ , m  + ~rax" ,m + fl,n k + 2[3 m" e + e m n [ j n f  ' __ t e m n  x ,n , 

8 f '  = a f '  + 2 d f '  - i e ' n n f l m x  'n - 3 iemnf l  m X 'n + 2 i e ,  

and 

(7.9) 

(7.10) 

~5~ -- a+ + i13" ¢ ' ' ,  

5 ~ ' '  = a~, ' '  + ½,/~,m +y,,~, + e""t3"F' - tc'"~5'", 

3 F '  = a ~ "  + ~ i F '  - i e m n ( ~ m ~ k '  + ~ m ~ ' ) .  (7.11) 

We may redefine the fields such that e, X m and f transform as 'co-vectors'  under 
reparametrizations whilst 6, ffm and F transform as 'scalars'. This is accomplished 
by setting 

X 'm = X/~X 'n , f '  = e l ,  

~u'"' -'- x / ~  rn , F '  = e l " ,  (7.1 2) 

so that under a-transformations, 

Be, X'", f =  a ( " )  + d ( ) ,  

8q5, ~, 1 . ' :  a( " ) ,  (7.13) 

as desired. It" wc further set/3 m = e - l / 2 a  m we find the following supergauge trans- 
formations for the unprimed fields: 

fie = ice"' X m , 

• i a~ X~ X "  , 8 x m  = 2 a m  + e m n a n f  - ~_e 

i [c-,,,e/,, ~ + 3c,,,,,~,nx,,. c,,,,,~-,x,, ~ f] 6 f = -  e e + a n x n  , (7.14) 

8q~ = io~ rn ~m , 
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Od ??1 

6(am = e ~+ emnanb._,  t c~nxn(am 

aF . . . .  i_ (~. , .[~. ,(a. ,  + o~'"~,"'] +,~"x"F}, 
c 

whilst for local 0(2)  transR)rmations we have 

6 e = O ,  

(7.15) 

6X m = _ t 6 m n x n  , 

6 f :  2 i ,  

6 ~ = 6 F : 0 ,  

(7.16) 

6 (am = _ temn (an . (7.17) 

It is interesting to el)repute the effect of commuting two supergauge transR)rma- 
tions. We find that for all the above fields we obtain co-ordinate transformations, 
supergauge transformations and local 0(2)  rotations. Explicitly, for any field A we 
have 

169, 6a] A = 6aA + &rA + 6tA , (7.18) 

where 

2i c/n ~ m 
c 

7m = i f m n ~ m ~ n  

t =  - i e m " ( ~ " ~ "  - y " d " ) .  (7.19) 
c 

Thus the algebra closes in that the commutation leads to field-dependent trans- 
formations. 

In this gauge the action (7.2) becomes 

S =  ~1 . fd3 z e m n D m X D n X A _ l  , (7.20) 

where 

D m =  - - -  + iOta -~7 " 
aO m 

Expanding the superfields and integrating over 0 we find the ~--space Lagrangian 

L =  5 + + e F  2 + ~ " (a'~X m 
_ C 
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The corresponding r-space action is manifestly coordinate and 0 (2 )  invariant 
and using the t ransfornlations (7.14), (7.15), we find that the Lagrangian transforms 
as a total derivative under supergauge transformations, 

1 d [i u ,n~m~ l c/nqjm~un×n iernn~m } 8L =~-~rle  - e -- ~nF . (7.22) 

The Euler-kagrange equations derived from (7.21) are given by 

+ i  × = 0 ,  

2~ m 1. m emn~n f  "~i _ e ~  X + _~>fn~kn×n _ emn×nF=O, 

eF + iemn~um×n = 0 ,  (7.23) 

~2 + i;~m×m + (~m×m)~ = O, 

d " "  ¢"  ~" = 0 , 

~ m  + 2i~m~nxn + emn~nF= O. (7.24) 

Eqs. (7.23) may be considered as the equations of motion whilst eqs. (7.24) are the 
constraints. These may be simplified considerably by choosing the proper-time 
gauge (A = 1 ) whereupon the equations of motion become 

= }m = F = 0 ,  (7.25) 

and the constraints become 

~z = ~ r n  = emn ~m tkn = 0 .  (7.26) 

The first two of these last equations are straighttbrward generalizations of  the 
case of  only one 0 given in sect. 3, while the third condition will give us colour con- 
finement in the quantum theory. 

The solutions to (7.25) are clearly given by 

= qU + p~r ,  

F = 0 ,  (7.27) 

where p is now a Lorentz index, and the quantum theory is defined by giving the 
basic commutat ion relations 

[qu, q~] = ig~  , 

[C~ n, C~' ]+ = guy8 mn , (7.28) 
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together with imposing the constraints (7.26) on the physical states. The anti-con> 

mutation relation (7.28) may be realized by setting 

C~m = ½ (bUm + b +u) ,  (7.29) 

where 

[bUm, b+n v ]+ = gu%mn.  

Tile constraints then become 

(7.30) 

/~2ll]Jphy s) = 0 , 

6 mnb+m b n 14'phys> = 0 ,  

p "  b m [ ~ p h y s )  = O .  ( 7 . 3 1 )  

The operator emnb+mb n generates global 0 (2 )  transformations, so that the second 
of the conditions (7.31) implies that the physical states must be O(2)singlets and 
that we have colour confinement. Defining momentum eigenstates by 

IO, p) = e -ip"//10), (7.32) 

we then have the following spectrum of physical states: 

10,p), 8mnb+s m b'[" 10, p},  emnb+;mb~ n 10, p ) ,  

bl+ ~, 1+ ~,2+,,+2 la ,x (7.34) 1 u2  t"l u2  IU, U t , 

where b± = (b 1, b2) if we choose p = (P3, 0, O, p3) . 
The system therefore turns out to describe six massless states corresponding to 

four spin-O particles and one spin-2 particle. 
After the completion of  this work we received two preprints by P.A. Collins 

and R.W. Tucker (Lancaster) and A. Barducci, R. Casalbuoni, and L. Lusanna 
(Firenze) in which the case of  the massive spinning particle also is discussed. 

We would like to thank David Olive and N.D. Hari Dass for helpful discussions. 
L. Brink warmly acknowledges the support of  the Swedish Atomic Research Coun- 
cil. P. Howe is grateful to the British Royal Society for financial support and the 
Niels Bohr Institute for its hospitality. 
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