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Chapter 3. Second Order Linear Equations

EXAMPLE

1

the form of the solution. In fact, later in this section we use this method to derive a
formula for a particular solution of an arbitrary second order linear nonhomogeneous
differential equation. On the other hand, the method of variation of parameters even-
tually requires that we evaluate certain integrals involving the nonhomogeneous term
in the differential equation, and this may present difficulties. Before looking at this
method in the general case, we illustrate its use in an example.

Find a particular solution of
y" +4y =3csct. (1)

Observe that this problem does not fall within the scope of the method of un-
determined coefficients because the nonhomogeneous term g(¢) = 3 csct involves a
quotient (rather than a sum or a product) of sin # or cos f. Therefore, we need a different
approach. Observe also that the homogeneous equation corresponding to Eq. (1) is

Y’ +4y =0, @
and that the general solution of Eq. (2) is
y.(t) = ¢, cos2t + ¢, sin 2¢. 3)

The basic idea in the method of variation of parameters is to replace the constants ¢
and ¢, in Eq. (3) by functions u (¢) and u, (), respectively, and then to determine these
functions so that the resulting expression

y = u,(t) cos2t + u,(t) sin 2t 4)

is a solution of the nonhomogeneous equation (1).

To determine #, and u, we need to substitute for y from Eq. (4) in Eq. (1). However,
even without carrying out this substitution, we can anticipate that the result will be a
single equation involving some combination of u,, u,, and their first two derivatives.
Since there is only one equation and two unknown functions, we can expect that there
are many possible choices of u, and u, that will meet.our needs. Alternatively, we
may be able to impose a second condition of our own choosing, thereby obtaining two
equations for the two unknown functions u, and u,. We will soon show (following
Lagrange) that it is possible to choose this second condition in a way that makes the
computation markedly more efficient.

Returning now to Eq. (4), we differentiate it and rearrange the terms, thereby
obtaining

y = —2u (t) sin 2t + 2u,(¢) cos 2t + u'y (t) cos 2t + uy(t) sin 2. (5

Keeping in mind the possibility of choosing a second condition on «; and u,, let us
require the last two terms on the right side of Eq. (5) to be zero; that is, we require that

u} () cos 2t + uj(t) sin2t = 0. 6)

It then follows from Eq. (5) that
y' = —2u,(t) sin 2 + 2u,(t) cos 2t. ¢
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Althqugh the ultimate effect of the condition (6) is not yet clear, at the very least it has
simplified the expression for y'. Further, by differentiating Eq. (7), we obtain

¥ = —du, (1) cos 2t — 4u,(¢) sin 2t — 2u () sin 2¢ + 2u)y(t) cos 21. (8)

Then, substituting for y and y” in Eq. (1) from Egs. (4) and (8), respectively, we find
that u, and u, must satisfy

—2u (1) sin 2t + 2u’y(t) cos 2t = 3csct. 9)

Summarizing our results to this point, we want to choose u, and u, so as to satisfy
Egs. (6) and (9). These equations can be viewed as a pair of linear algebraic equations
for .the two unknown quantities u} (f) and u}(¢). Equations (6) and (9) can be solved in
various ways. For example, solving Eq. (6) for u}(z), we have

2t
wh(6) = —u, (1) 2L
2(0) ‘()sin2t (10)
Then, substituting for u5(¢) in Eq. (9) and simplifying, we obtain
, 3csctsin2t
uy(t) = ————— = —3cost. (11)

2

Further, putting this expression for u} () back in Eq. (10) and using the double angle
formulas, we find that

3costcos2t  3(1 —2sin’s) 3
= = —csct — 3sint. (12)

u,(t) = _ -
2 sin 2f 2sint 2

Having obtained | (r) and u}(¢), the next step is to integrate so as to obtain u, (1)
and u, (). The result is

. .
u(r) = =3sint + ¢, (13)
and
_3
uy(t) = 31Injesct —cott| +3cost + c,. (14)
Finally, on substituting these expressions in Eq. (4), we have
y = —3sintcos2t + %ln [csct — cott|sin2t + 3 cost sin 2t
+ ¢, cos 2t + ¢, sin2t,
or
y =3sint + 2In|csct — cott|sin2t + ¢, cos 2t + ¢, sin 2t (15)

The terms in Eq. (15) involving the arbitrary constants ¢, and ¢, are the general solution
of th§ corresponding homogeneous equation, while the remaining terms are a particular
solution of the nonhomogeneous equation (1). Therefore Eq. (15) is the general solution
of Eq. (1).

In thp .preceding example the method of variation of parameters worked well in
determining a particular solution, and hence the general solution, of Eq. (1). The next
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Chapter 3. Second Order Linear Equations

question is whether this method can be applied effectively to an arbitrary equation.
Therefore we consider

Y+ p@)y +q@y =g, (16)
where p, ¢, and g are given continuous functions. As a starting point, we assume that
we know the general solution

(1) = 3, (1) + ¢, (1) A7
of the corresponding homogeneous equation
y' +p@®)y +q0)y =0. (18)

is i j i hown how to solve Eq. (18) only
This is a major assumption because so far we have.s
if it has conthant coefficients. If Eq. (18) has coefficients that depend on £, then usually

] i - d to obtain y (¢).
the methods described in Chapter 5 must be use : .
The crucial idea, as illustrated in Example 1, is to replace the constants ¢, and ¢, in

Eq. (17) by functions u (f) and u, (1), respectively; this gives
y = u, )y, (1) + uy D)y, (). (19)

Then we try to determine u(¢) and u,(t) so that the expression in Eq. (19) is a solution
of the nonhomogeneous equation (16) rather than the homogeneous equation (18).

Thus we differentiate Eq. (19), obtaining
y =l (), (@) +u, (O ) +ur()y, ) + Uy (1) yy (1). (20)

As in Example 1, we now set the terms involving u' (1) and uj (1) in Eq. (20) equal to
zero: that is, we require that

W )y, (1) + up()y, () = 0. 2D

Then, from Eq. (20), we have
Yy =y (O (@) F uy ()Y (0). (22)
Further, by differentiating again, we obtain
Y= ()Y (1) + u, (DY (1) + up ()Y (0) + uy(0)y5 (0. (23)

Now we substitute for y, y’, and y” in Eq. (16).fr0m Eq§. (19), (22), and (23),
respectively. After rearranging the terms in the resulting equation we find that

u (O] () + pOy (1) +q@)y ()]
+ u, (D5 (1) + p(1)yy () +q )y, ()]
F )y () + ub Oy () = (), (24)

Each of the expressions in square brackets in Eq. (24) is zero because both y, and y,
are solutions of the homogeneous equation (18). Therefore Eq. (24) reduces to

(Y1) + uy (DY () = g (). (25)

Equations (21) and (25) form a system of two linear algebraic equatiions foé tltlg
derivatives u/ (1) and uy (1) of the unknown functions. They correspond exactly

Eqs. (6) and (9) in Example 1.

3.7 Variation of Parameters 183

Theorem 3.7.1

By solving the system (21), (25) we obtain

v, (1)g(t)

. y(ng)
W('\‘] '."3}“ )’

Wy )0’
where W (y,,y,) is the Wronskian of ¥, and y,. Note that division by W is permissible

since y, and y, are a fundamental set of solutions, and therefore their Wronskian is
nonzero. By integrating Egs. (26) we find the desired functions u,(t) and u,(t), namely,

MII (t) = M;(I) = (26)

: v5(r)g(r) v (r)g(r)
) =— | ==/~ - n H=| =122 g ) 27
i) Wy 3,)(0) e 21 / Wy 3, (1) T @7

Finally, substituting from Eq. (27) in Eq. (19) gives the general solution of Eq. (16).
We state the result as a theorem.

If the functions p, ¢, and g are continuous on an open interval 7, and if the func-
tions y, and y, are linearly independent solutions of the homogeneous equation (18)
corresponding to the nonhomogeneous equation (16),

Y+ Py +q@)y =g,
then a particular solution of Eq. (16) is

Yo =y [ ﬁ% dt+ 3,0 [ ‘J(—lfl”f—‘)’};—) dr, (@8
and the general solution is
Y=y (1) 4,3, (1) + Y (), (29)
as prescribed by Theorem 3.6.2. .

By examining the expression (28) and reviewing the process by which we derived it,
we can see that there may be two major difficulties in using the method of variation of
parameters. As we have mentioned earlier, one is the determination of ¥, (#) and y, (1),
a fundamental set of solutions of the homogeneous equation (18), when the coefficients
in that equation are not constants. The other possible difficulty is in the evaluation of
the integrals appearing in Eq. (28). This depends entirely on the nature of the functions
Yi» ¥, and g. In using Eq. (28), be sure that the differential equation is exactly in the
form (16); otherwise, the nonhomogeneous term g(r) will not be correctly identified.

A major advantage of the method of variation of parameters is that Eq. (28) provides
an expression for the particular solution Y (¢) in terms of an arbitrary forcing function
g(r). This expression is a good starting point if you wish to investigate the effect of
variations in the forcing function, or if you wish to analyze the response of a system to
a number of different forcing functions.

%

PROBLEMS

In each of Problems [ through 4 use the method of variation of parameters to find a particular

solution of the given differential equation. Then check your answer by using the method of
undetermined coefficients.

Ly =5y 46y =2

2. y” — y/ -2y = et
3.y 2y +y=3e""

4. 4y"—4y' +y =167
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