
Is the 2nd law of thermodynamics just a consequence of the 1st 

law for an ideal gas ?

The question arises from the following reasoning, which apparently brings from A 
(1st law) to B (2nd law).

Let us postulate the following hypothesis:
– 1st law :  ΔU = Q – W   ,   d U=Q−W (1),
U being a state function (independent on the past history)
(assumed that heat is positive when received by a system, work is positive when done by the system on the 
outside)

– reversible transformations
(any state during a transformation is an equilibrium state, all heat and work exchanges are reversed if the 
transformation is accomplished backwards along the same path)
– only ideal gases involved, i.e.  pV=n RT (2) applies and specific heats 

cV=
1
n [Qd T ]

V

; c p=
1
n [ Qd T ]

p
 (3)    are constant

and see what chain of reasoning may be developed.

1. Mayer's relation  

 cp – cV = R (4)  ,

proved as follows.

Let us consider two states 1 and 2 of an ideal gas, represented by the two 
points (p1,V1) and (p2,V2) in Clapeyron's plane. Being U a state variable, its 
variation when passing from state 1 to state 2 will be independent on the 
transformation path; therefore, with reference to the figure next, 
U132=U 142=U 12 , paths 1 → 3 → 2 and 1 → 4 → 2 consisting both 

only of isobaric and isochoric transformations. 
Based on 1st law : 
U132=Q132−W 132=nCpT 3−T 1nCV T 2−T 3−p1V (5')

U142=Q142−W 142=nC v T 4−T1nC pT 2−T 4−p2V (5”).
For an ideal gas  nT = pV/R, by which we can eliminate the temperatures in 
the (5) and rewrite them completely in terms of pressures and volumes, i.e. 

U132= c pR −1 p1V cVR V 2 p (6')  ; U142= c pR −1 p2V cVR V 1 p  (6”)

wherein V=V 2−V 1 ;  p=p2−p1 . Now, by equating U 132=U 142 we finally come to the 
relation:

cV
R
 pV= c pR −1 pV (7), which must be valid for  any transformation starting form point 1 and 

ending in point 2, and therefore for transformations for which we may consider   p≠0 ; V≠0 ; 

therefore it must be 
cV
R
=
cp
R
−1 , from which Mayer's relation follows: cV=c p−R .



2. Internal energy and temperature

In an ideal gas the internal energy U depends only on the temperature. 

Proof is that by combining Mayer's relation and the equation of ideal gases  with e.g. the (6') we obtain:

U 12=U 132= c pR −1 p1V cVR V 2 p=
cV
R
 p1VV 2 p=

cV
R
n RT ⇒ U 12=n cVT

(8)

3. Work in an isothermic process

Such work may be found by integrating the ideal gas equation 

 p=
nRT
V

⇒ W=∫
V 1

V 2

pdV=n RT ln
V 2

V 1
 (9)

and is equal to the heat exchange Q, since along an isotherm it must be ΔU=0 (point 2. 
above, relation (8).

3. Adiabatic slope

In a reversible cycle undergone by an ideal gas , based on 1st law: 

Q=dWU= pdVncV dT= pdVcV d 
pV
R

 ; hence Q=
1
R
c p pdVcV V dp  (10)

A system will receive heat in a process if δQ > 0 ; the process will be adiabatic if δQ  = 0. 
from the (10):

Q≥0 ⇔ c p pdVcV V dp≥0 ⇔
dp
dV

≥−
c p p

cV V
=−

p
V

(11)   (with =
c p
cV

)

The adiabatic slope will be the limit condition of the (10), i.e. 
dp
dV

=−
p
V

⇒ V dp p dV=0 ⇒ d  pV 
=0 ⇒ pV 

=constant  (12)

(equation of adiabats).
The heat exchanged during a process depends on the slope of the corresponding 

pV curve:
during an expansion 

Q≥0 ⇔
dp
dV

≥[ dpdV ]
ad

(11') ,  with [ dpdV ]
ad

=−
p
V

, i.e.
he heat exchange is positive if the slope of the 
expansion curve is (a number) greater than the 
slope of the adiabat in the same point; during a 
compression, the opposite is true, i.e. 

Q≥0 ⇔
dp
dV

≤[ dpdV ]
ad

(11”).

which is  summarised in the figure next. 



4. Carnot's theorem
Let us consider a power reversible cycle (A → 

1 → B → 2 → A), as in the figure next, where 
exchanges of heat are indicated, together with the 
two extreme tangent adiabats.
The shaded portion between the points A and B, 
delimited by the tangent adiabats, is the portion of 
the cycle where Q>0, the remaining portion is 
where Q<0; the upper portion between the points 
1 and 2, delimited by tangent isochorics is the 
expansion phase (W>0), the lower portion between 
points 1 and 2 is the compression phase (W<0).

In Carnot's cycle heat is exchanged only at 
constant temperature and with only two heat 
sources, i.e. the cycle comprises two isotherms and 
two adiabats, as in 
the figure below. 

The efficiency of this cycle is :

=1−
Q2

Q1
=1−

n RT L ln
V 3
V 4

n RT H ln
V 2

V 1

 (12)

Along isotherms it will be also :

p1V 1= p2V 2 ; p3V 3= p4V 4 ⇒
p4
p3
=
V 3

V 4

;
p1
p2
=
V 2
V 1

(12'),

and considering the equations of adiabatics:

p1V 1

= p4V 4

 ; p2V 2

= p3V 3


⇒

p1
p2 
V 1

V 2



=
p4
p3 
V 3

V 4



(12”)

then, from the (12') and the (12”) we come to the 
V 2

V 1
=
V 3

V 4

(12'''), and from the (12) 

we finally find Carnot's efficiency:

=Car=1−
T L
T H

(14)

It can now be proved that if we consider 
a  power reversible cycle represented 
by a closed curve in pV  plane, for 
which a single heat input phase and a 
single heat output phase may be 
identified between two points A and 
B, its efficiency is lower or equal to 
Carnot efficiency between the highest 
and the lowest reached 
temperatures.

Given such a cycle, let us consider the 
circumscribed Carnot's cycle, I.e. with isotherms 
and adiabats tangent to it (see figure next). Four 



additional power cycles may be defined with processes from Carnot's cycle and from the given cycle, i.e.:
Cycle 1A (1 → mid of 1-2 → A → 1);
Cycle 1B (2 → B → mid of 1-2 → 2);
Cycle 2A (A → mid of 3-4 → 4 → A);
Cycle 2B (B → 3 → mid of 3-4 → B), 
producing each a work corresponding to the respective enclosed area W1A, W1B, W2A, W2B. . 
In cycles 1A and 1B the system receives respective heats Q'1A and Q'1B, whose sum is the heat absorbed by a 
system in Carnot's cycle along isotherm 1-2, and outputs respective heats Q1A and Q1B, whose sum is the heat 
received by the system in the heat input phase of the given cycle  (due to reversibility of all processes, the 
process B → A delivers exactly the same heat that is received in the process A → B), i.e. 
Q'1=Q' 1AQ '1B ; Q1=Q1AQ1B .

Similarly, for cycles 2A and 2B it can be observed that in such cycles altogether the system  receives the heat 
output during the given cycle in the heat output phase, and that they output altogether the heat output by 
the system in Carnot's isotherm 3-4 :  Q' 2=Q '2AQ' 2B ; Q2=Q2AQ2B . Since in a reversible cycle it 
is ΔU = 0, for the 1st law of thermodynamics we will have also:
Q'1A=Q1AW 1A ; Q '1B=Q1BW 1B ; Q2A=Q' 2AW 2A ; Q2B=Q' 2BW 2B and, in particular 

Q'1Q1 ; Q2Q' 2  (6)

From the (6) it follows that 
Q2
Q1


Q '2
Q '1

⇒ 1−
Q2

Q1
1−

Q '2
Q'1

, I.e. ≤Car=1−
T L
T H

 (15)

(the equal  relation  being valid only if W1A=W1B=W2A=W2B=0, I.e. if the cycles coincide).

If we now consider a general reversible power 
cycle, by drawing tangent adiabats and 
identifying their contact points (points A, B, C, 
D, E in the figure next) with the cycle, we can 
split the power cycle into partial cycles having 
each a single heat input phase and a single 
output phase defined by two points (e.g. 
cycle C → D → B → A → C in the next figure, 
having heat input from C to D, and cycle E → 
A → B → E having heat input from E to A), to 
which the previous result applies, i.e. for the
k-th of these cycles it will be  

   k=
W k

Qik
=1−

T Lk
T Hk

 (16) ,

the subdivision borders between the partial 
cycles being adiabats, without heat exchange.
Furthermore the total work accomplished by 
the cycle will be  the total enclosed area, i.e.
W=∑

k

W k , and the total input heat will be 

Qi=∑
k

Qik . If we consider the highest and lower temperatures TH and TL reached in the 

cycle, it will be:  T Lk≥T L ; T Hk≤T H , ∀ k ; hence k=1−
T Lk
T Hk

≤1−
T L
T H

, ∀ k .

Finally we have =
W
Qi

=

∑
k

W k

∑
k

Q ik

=

∑
k

Q ikk

∑
k

Q ik

≤

∑
k

Qik 1− T LT H 
∑
k

Qik
⇒ ≤1−

T L
T H

, i.e. the total 

efficiency of any generic cycle is not greater than Carnot efficiency between 
the highest and the lowest reached temperatures. (Carnot's theorem)



5. The 2nd law
Having proved Carnot's theorem, the 2nd law 

becomes just a direct consequence. E.g. let us 
consider a Carnot power engine between sources TH 

and TL, as in the figure next. 

If heat transfer was possible from source TL to 
source TH without spending any work, we could 
combine a machine that performs such heat transfer 
with a Carnot power engine, to bring back a part Q'2 
of Carnot's output heat to the hottest source.
For such a resulting machine the actual input heat 
would be  Qi=Q1−Q'1Q1 , and therefore 

=
W
Qi


W
Q1

=1−
T L
T H

, contrary to Carnot's theorem. 

Therefore it must be impossible to transfer heat from a lower temperature 
source to a higher temperature one without spending work.

In the end, for reversible processes involving an ideal gas, apparently we 
have come to the 2nd law in Clausius' formulation, starting only from the 1st law 
(it would be easy to come similarly from Carnot's theorem to other formulations of the 2nd 

law).


	Is the 2nd law of thermodynamics just a consequence of the 1st law for an ideal gas ?
	1. Mayer's relation  
	2. Internal energy and temperature
	3. Work in an isothermic process
	3. Adiabatic slope
	4. Carnot's theorem
	5. The 2nd law


