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ABSTRACT: A simple equation of state (EoS) has recently been introduced (J. Phys. Chem. B 2009, 113, 11977−11987) as (Z
− 1)v2 = e + f/ρ + gρ2, where Z ≡ pv/RT is the compressibility factor, v = 1/ρ is molar volume, and e, f, and g are temperature
dependent parameters. This EoS has been found to be accurate for all types of nano and bulk solids and bulk fluids, in the entire
temperature and pressure ranges for which experimental data are reported, except for the isotherms within 1 ≤ Tr = T/Tc ≤ 1.1
for the spherical and near spherical species and for a wider temperature range for the cylindrical molecules. The aim of this work
is to investigate the validity of a three-term expression similar to the mentioned EoS for both thermal and internal contributions
to the compressibility factor, separately. Such investigation shows that although the total pressure obeys the EoS well, neither its
thermal nor its internal contributions follow a similar three-term expression. Therefore, there are some terms in the individual
pressure contributions, which cancel each other out in the total pressure, which makes the EoS so simple. However, we have
found that there is one extra term in each contribution which does not cancel out in the total pressure, for the isotherms within
the critical region. Such a term significantly improves the isotherms near the critical isotherm, compared to the original EoS. The
added term to the pressure components also improves both thermal and internal pressures in the entire temperature range. The
results of this work show that, although semiempirical EoSs such as van der Waals, Redlich−Kwong, and EoS-III are fairly
accurate in describing the pressure behavior of fluids, except in the critical region, they may show a remarkable deviation for the
thermal and internal pressures. Finally, the obtained expression for the internal compressibility factor along with the EoS is used
to derive internal energy, enthalpy, entropy, heat capacity at constant volume, and constant pressure each as a quadric function in
density, for each isotherm, out of the critical region.

1. INTRODUCTION
The thermal pressure coefficient, (∂p/∂T)v, is one of the most
important fundamental properties which is closely related to
various properties, such as the entropy of melting, isothermal
compressibility, and isobaric expansibility.1 Thus, the study of
the thermal pressure coefficient could provide a useful basis for
understanding the nature of fluids and solids. On the other
hand, the cohesive forces which are due to the forces of
attraction and repulsion among fluid molecules, holding them
together and creating pressure within the fluid which, are called
the internal pressure. Internal pressure, −(∂E/∂ν)T where E is
the internal energy, a fundamental fluid property, is closely
related to different properties of fluids such as ultrasonic
velocity, free volume, viscosity, surface tension, solubility
parameter, and latent heat of vaporization in the liquid phase.2

Obtaining physical properties of a substance via theoretical
methods such as statistical thermodynamics is difficult because
of the complex nature of intermolecular interactions. Hence,
experimental methods have attracted much attention. Remark-
able experimental data,3−9 simple regularities, and theoretical
results have been reported in the literature.10−18

Moeini15 reported that the quantity [(∂E/∂v)T/ρRT]v
2 is

linear with ρ2 by using the linear isotherm regularity (LIR)
equation of state (EoS).19 This regularity provides a relation
between internal pressure and volume. Goharshadi et al.2

computed the internal pressure for different liquids using a
statistical mechanical equation of state and investigated a
relation between the internal pressure and external (thermal)
pressure. Siepmann et al.16 found a parabola pressure function
from simulations of the internal pressure for various

compounds and provided an additional structural information
(pressure dependency of the radial distribution function and
hydrogen bonding). Zeng et al.17 proposed an empirical
regularity for dense fluids, which was the thermal pressure
coefficient is a near-parabola function of pressure. This
regularity was tested with experimental data and the statistical
results showed its accuracy.
There are three types of EoS: empirical, theoretical, and

semiempirical.20 Empirical EoSs contain a large number of
parameters whose values depend merely on the material.
Usually, these parameters have no physical meaning and simply
are adjustable parameters. These EoSs are suitable for one or a
small group of materials, and the obtained thermodynamic
properties from such EoSs are very accurate in the range of
fitting pressure and temperature but, for other materials or
outside the range, are not valid. Some famous empirical EoSs
are the Tait,21 Benedict−Webb−Rubin,22 and Helmholtz
function forms.23 Theoretical EoSs have temperature depend-
ent parameters with a physical meaning. Due to theoretical
limitations, such EoSs are not usually as accurate as the
previous ones, but they are able to calculate thermodynamic
properties outside the defined range. Theoretical EoSs are
generally based on statistical mechanics and are obtained using
the concept of the radial distribution function or perturbation
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theory. Song and Mason24 introduced an analytical-theoretical
EoS using the concepts of the statistical mechanics for the
molecular liquids. Unlike the empirical equations, semi-
empirical EoSs require little experimental data. In fact, this
type of EoSs has a combination of characteristics of both
theoretical and empirical equations. The van der Waals
(vdW),25 Redlich−Kwong (RK),26 and LIR19 EoSs are a few
semiempirical EoSs among many.
Thermodynamic properties of fluids at high pressures are of

much interest in a variety of chemical industrial processes,
notably for separation processes in natural-gas and gas
condensates production, supercritical extraction, and fractiona-
tion of petroleum.27,28 Some of the separation processes
encounter the critical conditions. The way mean-field equations
such as the van der Waals and Redlich−Kwong EoSs
incorporate molecular attraction and repulsion implies
neglecting fluctuations. This neglecting of both local and
long-range structure is an impediment to characterizing liquids
and supercritical fluids. In particular, mean-field theory is
unable to describe the critical behavior properly.29 The
asymptotic nature of singular behavior of fluids near the critical
point is described in terms of the scaling laws with the universal
critical exponents and universal scaling functions.30,31 The
region of application of these functions is quite small;32 in other
words, the influence of these functions is observed only in a
very small range of temperature and density near the critical
point. It is also observed that the critical fluctuations affect the
thermodynamic properties over wide ranges of temperature and
density.33

Many researchers have proposed various empirical34,35and
theoretical36−44 EoSs to predict the behavior of fluids near the
critical region. Lee et al.,36 Feyzi et al.,37 and Wyczalkowska et
al.38 developed a crossover cubic model near and far from the
critical region using the Patel−Teja (PT),45 Peng−Robinson
(CPR),46 and vdW EoSs, respectively. Jiang and Prausnitz39

developed a crossover equation of state upon incorporation of
contributions from long-wavelength density fluctuations by a
renormalization-group theory (EoSCF + RG) for describing
thermodynamic properties of chain fluids. However, all
mentioned models show a deviation at high densities or
pressures.
Recently, an accurate equation of state (EoS-III),47 based on

an effective near-neighbor pair interaction of an extended
Lennard-Jones (12, 6, 3) type, was proposed by Parsafar and
co-workers. The equation of state gives a good description for
all types of fluids, quantum light molecules,48nonpolar
(including long-chain hydrocarbons), polar, hydrogen-bonded,
an ionic liquid model, and metallic, at temperatures ranging
from the triple point to the highest temperature for which there
is experimental data. For fluids, there appears to be no upper
density limitation on the equation of state. The lower density
limit for isotherms near the critical temperature is the critical
density. For solids, the equation of state is very accurate for all
types considered, including covalent, molecular, metallic, ionic,
and nanosystems.49 Recently, the validity of EoS-III was
evaluated for confined water in the carbon nanotubes with
different diameters.50 The mathematical expression for EoS-III
is

ρ
ρ− = + +Z v e

f
g( 1) 2 2

(1)

or

ρ ρ ρ+ − = + +Z Z f e g( ) 1th in
2 4

(2)

where Z = p/ρRT is the compressibility factor, p and ρ stand
for pressure and molar density, respectively, T is temperature,
and e, f, and g are the temperature dependent coefficients of the
equation of state. The Zth and Zin are the thermal and internal
contributions of pressure in the compressibility factor,
respectively.
The aim of this work is to investigate the validity of a three-

term expression similar to eq 1 (given by eqs 3a and 3b) for
both thermal and internal contributions to the compressibility
factor, separately. We shall examined the validity by three
approaches: (i) using an accurate empirical EoS to calculate
thermal and internal pressure, (ii) using the modified hard
sphere EoS for calculation of the thermal pressure of the real
fluids, and (iii) using a quite accurate51 two-parameter RK-EoS
to find appropriate expressions for both thermal and internal
pressures. Then, the RK-EoS will be used to modify EoS-III for
the critical region. The predictive power of the modified EoS-
III will be investigated for some fluids within the critical region.
Finally, we shall derive and present analytical expressions for
the internal energy, enthalpy, entropy, and heat capacity, based
on the obtained internal pressure and using EoS-III.

2. POSSIBILITY OF PRESENTING THERMAL AND
INTERNAL PRESSURES BY A SIMPLE THREE-TERM
EXPRESSION IN DENSITY

One may simply assume that in order to have EoS-III, both
thermal and internal pressures have similar density depend-
encies, as

ρ
ρ ρ ρ= = + + +Z

p

RT
e f g1th

th
th

2
th th

4

(3a)

ρ
ρ ρ ρ= = + +Z

p

RT
e f gin

in
in

2
in in

4

(3b)

where pth and pin are the thermal and internal pressures
respectively, and eth,f th, and gth are temperature dependent
coefficients of Zth and ein, f in, and gin are those for Zin. Note that
for ρ→ 0, a fluid behaves ideally, Zth = 1 and Zin = 0, because of
the fact that there is no interaction among molecules in the
ideal state. To examine such an assumption, we have used the
empirical EoS of argon (Ar),52 to calculate its thermal pressure.
This equation of state contains 41 coefficients. For the density,
the estimated uncertainty of this EoS is less than ±0.02% for
pressures up to 12 MPa and temperatures up to 340 K, with the
exception of the critical region and less than ±0.03% for
pressures up to 30 MPa and temperatures within 235−520 K.
This EoS shows a reasonable extrapolation behavior up to very
high pressures and temperatures. The thermal pressure of Ar
may be calculated simply by taking the differentiation of p with
respect to T using its empirical EoS and multiply the result by T
for each isotherm. The internal pressure is the difference of the
total pressure and thermal pressure (p − pth). We have
calculated the pressure components for 145 and 200 K
isotherms of Ar. Some results are given in Table 1. Then eqs
3a and 3b have been fitted onto the calculated thermal and
internal compressibility factor for 180 K isotherm of Ar shown
in Figures 1 and 2 with the solid curves, respectively. As shown
in these figures, even though EoS-III well fits onto the points,
neither eqs 3a nor 3b fit onto the thermal and internal
contributions, respectively. The coefficient of determination
(R2) for the former fit is 0.99941, while for the latter fits it is
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0.99845 and 0.97976, respectively (see Table 2). The results for
similar fittings (including R2 and the average absolute percent
deviation of pressure (AAD%)) for one subcritical and seven
supercritical isotherms of Ar are summarized in Table 2. On the
basis of results given in Table 2, one may notice that the fitting

of EoS-III onto the calculated values obtained from the
empirical EoS of argon is quite good, except for the critical
region (150 < T < 200 K). The critical temperature of argon is
150.687 K.53A similar investigation has been carried out for
nitrogen (N2) (Tc = 126.192 K54), water (H2O) (Tc = 647.096
K55), and methane (CH4) (Tc = 190.564 K56), using their
empirical EoSs given in refs 57, 58, and 59, respectively. As in
Table 2, from the results given in Table 3, we may conclude
that EoS-III is accurate for all isotherms, except for those
supercritical within the critical region; however, neither eq 3a
nor eq 3b fit onto the thermal and internal contributions,
respectively, if a wide density range is considered.

Table 1. Calculated Pressure Components for 145 and 200 K
Isotherms of Ar Using the Empirical EoS52

T (K) ρ (mol/L) ptot (MPa) pth (MPa) pin (MPa)

145 22.82 5.000 74.15 −69.15
26.89 15.00 121.9 −106.9
31.00 45.00 180.7 −135.7
34.02 90.00 231.6 −141.6
38.63 220.0 325.4 −105.4

200 7.359 9.000 17.26 −8.260
31.38 116.5 232.8 −116.3
38.00 306.5 375.2 −68.70
40.97 458.5 449.4 9.100
42.69 572.5 495.1 77.40

Figure 1. Fitting (a) EoS-III onto the calculated compressibility factor
and (b) eq 3a onto the calculated thermal compressibility factor for
the 180 K isotherm of argon, using the empirical EoS (solid curves).
Also, the fitting of eq 13 is shown by the dash curve.

Figure 2. Same as Figure 1 except for the internal pressure which is
fitted by eqs 3b and 16.

Table 2. Coefficient of determination (R2) for the Fitting of
Equations 2, 3a, and 3b onto the Calculated Values of Z, Zth,
and Zin, Respectively, Obtained from the Empirical EoS of
Ar for the Given Isothermsa

R2 (AAD%)b

T (K) Δp (MPa) Z Zth Zin

argon
145 3−290 0.99990 0.99922 0.99824

(3.4512) (0.96860) (0.92540)
151 0−325 0.99813 0.99576 0.94501

(14.342) (5.6419) (18.212)
160 0−375 0.99896 0.99795 0.96732

(8.2460) (3.8111) (17.616)
165 0−405 0.99903 0.99802 0.96713

(7.8174) (3.9783) (22.329)
180 0−495 0.99941 0.99845 0.97976

(5.6540) (3.2780) (22.552)
200 0−635 0.99971 0.99908 0.98830

(3.6164) (2.5787) (16.833)
300 5−1000 0.99996 0.99964 0.99826

(0.92580) (1.2632) (11.243)
400 5−1000 0.99999 0.99978 0.99849

(0.31330) (0.82490) (6.3750)
aThe average absolute percent deviation (AAD%) for the total,
thermal, and internal pressures are given in parentheses for each
isotherm, within pressure range (Δp). bAAD% = (100/n)Σi=1

n |(pemp −
pcal)/pemp|.
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3. DENSITY DEPENDENCY OF THERMAL PRESSURE
In this section, the density dependency of the thermal pressure,
pth, and hence the contribution of thermal pressure on the
compressibility factor, Zth = pth/ρRT, are investigated by
different approaches.
3.1. Using Modified Hard Sphere (HS) EoS. In many

references, the EoSs for the hard sphere model have been
substituted for the repulsion term in the famous EoSs to obtain
the EoS for the real fluids.60 In a simple EoS like van der Waals,
the thermal pressure is due to the repulsion interactions, then
we may use the hard sphere EoS to present the thermal
pressure of a real fluid. However to make the presentation
accurate, we shall make two modifications on the HS-EoS as
follows: (1) Unlike hard spheres, real molecules penetrate each
other to some extent; therefore, molecular diameter is
temperature dependent. (2) In addition to the mean molecular
separations, the interactions among molecules change with

temperature as well; hence, unlike the HS model, the
coefficients of eq 3a for a real fluid are expected to be
temperature dependent.

3.1.1. Temperature Dependency of Molecular Diameter.
An accurate virial equation with sixteen terms has been
reported for the HS fluid,61,62 by using molecular dynamics
simulations as

= + + + + +Z y y y y1 4 10 18.3648 28.2245 ...2 3 4
(4)

where y = πρσ3/6 is the packing fraction for the spheres with
the diameter σ. At very low densities, Z can be written in terms
of y as

= +Z y1 4 (5)

If we use the empirical EoS of a fluid to calculate its thermal
pressure, and hence Zth = pth/ρRT, and substitute Zth for Z in
eq 5, for an isotherm at low densities, we can obtain its
molecular diameter at that temperature. Such investigation has
been carried out for CH4, Ar, N2, and oxygen (O2) fluids (their
empirical EoSs are given in refs 52, 57, 59, and 63,
respectively), for which the molecular attractions are weak
and not very far from the HS. The results are shown in Figure
3. As shown in this figure, the diameter decreases with

temperature, which is in accordance with those reported in
literature.64−66 On the basis of Figure 3 (inset), the molecular
diameter varies almost linearly with 1/T as

σ σ
σ

= +
T0

1
(6)

where σ0 is the molecular diameter at very high temperatures
which may be considered as the hard core diameter of the
molecule.

3.1.2. Tempreture Dependence of Thermal Compressibility
Factor. The Carnahan−Starling EoS67(CS-EoS) is an accurate
closed-form EoS that has been proposed for the hard sphere
fluid

=
+ + −

−
Z

y y y
y

1
(1 )CS

2 3

3
(7)

Table 3. Same as Table 2 for N2, H2O, and CH4 Fluids

R2 (AAD%)

T (K) Δp (MPa) Z Zth Zin

nitrogen
120 4−320 0.9999 0.9999 0.9999

(1.226) (0.1070) (1.839)
130 0−480 0.9991 0.9949 0.9644

(13.78) (6.942) (22.37)
140 0−495 0.9994 0.9971 0.9752

(8.782) (5.265) (20.05)
150 0−530 0.9995 0.9979 0.9825

(5.965) (4.176) (17.71)
250 0−990 0.9999 0.9997 0.9988

(0.7740) (1.399) (12.03)
500 0−1550 1.000 0.9999 0.9999

(0.1270) (0.2960) (3.521)
water
600 13−940 0.9999 0.9988 0.9919

(1.256) (0.5970) (0.9670)
630 20−1000 0.9999 0.9975 0.9878

(0.5040) (1.437) (1.840)
700 0−560 0.9937 0.9782 0.9496

(5.428) (5.615) (11.68)
800 0−750 0.9985 0.9951 0.9857

(1.871) (2.729) (7.297)
900 0−930 0.9996 0.9985 0.9945

(0.8570) (1.541) (5.067)
1000 0−1100 0.9998 0.9994 0.9976

(0.4660) (0.9030) (3.624)
methane
180 4−450 0.9999 0.9998 0.9991

(1.217) (0.2880) (2.302)
185 5−460 0.9999 0.9998 0.9989

(2.019) (0.4080) (2.717)
192 0−540 0.9988 0.9936 0.9546

(33.95) (7.246) (28.21)
200 0−700 0.9987 0.9944 0.9554

(11.61) (6.370) (24.08)
220 0−640 0.9994 0.9968 0.9780

(6.430) (4.804) (19.42)
250 0−810 0.9998 0.9984 0.9916

(3.318) (3.271) (15.84)
300 0−920 0.9999 0.9993 0.9964

(1.546) (2.025) (12.68)

Figure 3. Molecular diameter versus T and 1/T (inset) for methane58

(solid blue), argon52 (dashed red), oxygen65 (dotted purple), and
nitrogen56 (dashed−dotted green). σ200 is the molecular diameter at T
= 200 K.
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We shall use the CS-EoS to describe the thermal pressure of
a real fluid, but in addition to temperature dependency of the
molecular diameter discussed before, the coefficients 1 and −1
of the y2 and y3 terms, respectively, in the numerator of eq 7
will be assumed to be temperature dependent and will be
denoted by α(T) and β(T). Due to argument given in the
section 3.1.1, we have to consider the coefficients of the y terms
in eq 7 temperature independent. A similar correction was
applied by Boublik for the nonsphericity of real molecules.68

Including these two modifications in the CS-EoS, resulted in
the following expression for the thermal compressibility factor
of a real fluid

α β
=

+ + +
−

Z
y T y T y

y
1 ( ) ( )

(1 )CS
mod

2 3

3
(8a)

which will be referred to the modified Carnahan−Starling
equation of state (MCS-EoS) hereafter. The MCS-EoS may be
written in the virial form as

α α β

α β

= + + + + + +

+ + + + + + +

Z y y y

y a b y

1 4 (9 ) (16 3 )

(25 6 3 ) (36 10 6 ) ...

2 3

4 5

(8b)

Unlike eq 2, this equation and hence Zth, is expected to
include all powers of density. We have also used the empirical
EoS of Ar52 to calculate its thermal pressure and hence Zth.
Then eq 8a is fitted onto the calculated results for the 200, 300,
400, 500, 600, and 700 K isotherms and compared to the CS-
EoS. As shown in Figure 4, the MCS-EoS fits well onto the Zth

for the three shown isotherms (200, 300, and 700 K), with R2 >
0.996 and AAD% < 1.3 (for pth). The results for the calculated
pressure of six isotherms are summarized in Table 4. Also at
high temperatures, argon behaves like a hard sphere fluid;
therefore, its Zth approaches to that of HS. See the 700 K
isotherm in Figure 4 and the results for 500, 600, and 700 K in
Table 4.
3.2. Using the Accurate Semiempirical Redlich−

Kwong EoS. On the basis of vdW-EoS

=
−

−p
RT

v b
a

vm m
2

(9)

the thermal pressure may be obtained as

ρ
ρ

=
∂
∂

=
−ρ

⎛
⎝⎜

⎞
⎠⎟p T

p
T

RT
b1th

(10a)

If eq 9 is expanded as a power series of density we will have

ρ ρ ρ ρ= + + + + +Z b b b b1 ( ...)th
2 2 3 3 4 4

(10b)

We, also see that according to vdW EoS, the cubic term of
density is present in Zth. However, the vdW EoS predicts that
only repulsion interactions contribute in Zth. But as explained in
the previous section, the attractions among particles are
expected to contribute in Zth, as well. Such expectation is in
accordance with the RK-EoS,26

=
−

−
+

p
RT

v b
a

v v b T( )m m m
1/2

(11)

from which we may obtain the thermal pressure as

ρ
ρ

ρ
ρ

ρ ρ

ρ ρ ρ

=
−

+
+

= + + + − +

+ + + − +

+

⎛
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b T

RT b
a

b T
RT b

1 2 (1 )

2 2

2 2

...

th

2

3/2

2 2

3 3 4 4 5

(12)

Therefore, we may conclude from both vdW and RK EoSs
that the thermal compressibility factor cannot simply be
presented by eq 3a.

3.3. Calculation of the Thermal Pressure via an
Accurate Empirical EoS. In section 1 we saw that the
thermal compressibility factor could not be described by a
simple three-term expression of eq 3a. However, Zth obtained
from the empirical EoS of argon52 may be well fitted by

ρ ρ ρ ρ= + + + +Z e f g h1th th
2

th th
4 3

(13)

in which the ρ3 term is added to eq 3a. Figure 1b shows how
well Zth for the 180 K isotherm of argon is fitted by eq 13
compared to that of eq 3a. The results of similar fittings are
summarized in Table 5 for some other isotherms, as well, in

Figure 4. Fits of Zth for Ar, obtained from its empirical EoS, by the
MCS-EoS for the 200 (○), 300 (□), and 700 K (◊) isotherms. The
dotted line shows the CS-EoS for the hard sphere fluid.

Table 4. Coefficient of Determination and the Average
Absolute Percent Deviation of Pressure and Its Maximum
Value for Fitting MCS-EoS onto the Calculated Zth,
Obtained from the Empirical EoS for the Given Isotherms of
Argona

T(K) R2

AAD% (Max)

pth − pfit pth − pHS

200 0.9965 1.119 (4.125) 31.54 (60.66)
300 0.9996 0.8964 (2.647) 20.00 (48.27)
400 0.9999 0.4908 (1.246) 8.501 (25.93)
500 1.000 0.0941 (0.2402) 3.822 (14.33)
600 1.000 1.236 (2.091) 2.667 (7.877)
700 1.000 0.6450 (1.607) 2.491 (4.496)

aThe quantities pfit and pHS are the fitting and HS pressures obtained
from eqs 8a and 7, respectively.
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Table 5. Coefficient of Determination (R2) for Fitting Zth and Zin Calculated from the Empirical EoS, by Equations 13 and 16,
Respectively, along with the Values of Their Coefficients, for the Given Isotherms of Ara

T (K) R2 e × 10 (L/mol)2 f × 102 (L/mol) h × 103 (L/mol)3 g × 105 (L/mol)4 AAD%

Zin 145 1.00000 2.91 −2.99 0.540 −4.34 × 10−10 0.0001
150 1.00000 3.95 −3.56 0.621 −4.67 × 10−10 0.0001
151 0.99342 −2.38 2.04 −0.998 1.53 8.953
160 0.99823 −1.97 1.54 −0.796 1.29 5.439
165 0.99897 −1.83 1.38 −0.726 1.19 5.648
180 0.99965 −1.54 1.06 −0.582 1.00 3.967
200 0.99985 −1.28 0.792 −0.451 0.820 3.282
300 0.99999 −0.679 0.286 −0.185 0.411 0.8270
400 0.99999 −0.453 0.157 −0.105 0.270 2.738

Zth 145 0.99987 −2.70 2.50 −0.540 0.457 0.392
150 0.99971 −3.95 3.19 −0.621 0.417 1.191
151 0.99762 1.99 −2.21 0.998 −1.18 3.104
160 0.99886 1.64 −1.70 0.796 −0.945 2.532
165 0.99893 1.51 −1.53 0.726 −0.862 2.887
180 0.99933 1.31 −1.20 0.582 −0.686 2.291
200 0.99953 1.08 −0.890 0.451 −0.529 1.821
300 0.9999 0.642 0.275 0.185 −0.217 0.724
400 0.99998 0.483 −0.094 0.105 −0.128 0.298

aThe average absolute percent deviation of pressure is given, as well.

Table 6. Same as Table 5 for N2, H2O, and CH4 Fluids

T (K) R2 e × 10 (L/mol)2 f × 102 (L/mol) h × 103 (L/mol)3 g × 105 (L/mol)4 AAD%

N2 Zin 130 0.99804 −2.57 2.44 −14.9 30.0 0.342
140 0.99917 −2.14 1.83 −11.7 23.3 6.01
150 0.99948 −1.83 1.41 −9.40 20.0 3.99
250 0.99983 −0.705 0.174 −2.00 6.64 2.99
500 0.99995 −0.240 −0.038 −0.051 2.14 2.10

Zth 130 0.99853 2.25 −2.76 14.9 −20.0 0.119
140 0.99915 1.85 −2.09 11.7 −15.9 3.07
150 0.99940 1.56 −1.61 9.40 −10.0 2.59
250 0.99998 0.643 −0.132 2.00 −2.51 2.09
500 0.99999 0.391 0.185 0.051 −0.058 0.259

H2O Zin 600 0.99999 2.12 −1.68 3.00 −1.46 0.032
630 0.99636 2.90 −1.88 3.11 −1.52 0.778
700 0.99764 −2.22 1.27 −3.58 3.40 2.41
800 0.99965 −1.45 0.636 −1.72 1.72 1.18
900 0.99982 −1.05 0.350 −0.929 1.01 0.774
1000 0.99985 −0.796 0.198 −0.513 0.635 0.601

Zth 600 0.99995 −2.53 1.68 −3.00 1.83 0.115
630 0.99928 −3.09 1.82 −3.11 1.83 0.739
700 0.99760 1.69 −1.19 3.58 −3.22 1.61
800 0.99954 1.07 −0.571 1.72 −1.537 0.630
900 0.99981 0.772 −0.294 0.929 −0.830 0.363
1000 0.99988 0.594 −0.148 0.513 −0.466 0.271

CH4 Zin 180 0.99924 2.84 −3.69 4.70 12.4 2.11
185 0.99900 1.29 −1.94 −1.47 19.5 2.69
192 0.99479 −2.93 3.18 −21.1 43.8 11.6
200 0.99672 −2.78 3.00 −20.2 42.5 6.64
220 0.99686 −2.06 1.80 −13.2 30.4 6.21
250 0.99730 −1.42 0.806 −7.24 19.8 6.25
300 0.99867 −1.03 0.35 −4.12 13.6 6.84

Zth 180 0.99984 −2.53 2.79 −4.70 1.87 0.391
185 0.99987 −1.07 1.13 1.47 −5.82 0.356
192 0.99809 2.49 −3.53 21.1 −32.5 2.88
200 0.99840 2.35 −3.31 20.2 −31.7 2.64
220 0.99905 1.69 −2.03 13.2 −20.6 1.78
250 0.99943 1.10 −0.929 7.24 −11.2 0.992
300 0.99976 0.805 −0.372 4.12 −6.57 0.535
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which the coefficient of determination, average absolute percent
deviation of pressure, and coefficients of eq 13 are given. As
shown in this table, the fitting is done well for all isotherms
with R2 > 0.997 and AAD% < 3.1 for pressure (these numbers
may be compared with 0.995 and 5.64, respectively, given in
Table 3 when the ρ3 term is not included). However, the
deviation for the supercritical isotherms within the critical
region is the largest. Similar investigation carried out for N2,
H2O, and CH4 using their empirical EoSs, for which the results
are summarized in Table 6.

4. DENSITY DEPENDENCY OF INTERNAL PRESSURE
In this section, the possibility of expressing the internal
compressibility factor by eq 3b will be investigated by using the
vdW, RK, and empirical EoSs.
4.1. Calculation of Zin Using Two Semiempirical EoSs.

On the basis of vdW-EoS, Zin may be given as

ρ= −Z
a

RTin (14)

According to which Zin is linear in density for each isotherm.
This prediction is quite different with that shown in Figure 2.
We may use a significantly more accurate semiempirical EoS,
namely RK, to obtain pin and Zin. According to RK-EoS
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We notice that the RK-EoS predicts all powers of density for
Zin, similar to eq 13 for Zth, except for term 1.
4.2. Calculation of Internal Pressure via an Accurate

Empirical EoS. In section 2, we saw the failure of eq 3b to
describe Zin in a wide density range. On the basis of the
previous subsection, if the cubic term of density is added to eq
3b, we will have

ρ
ρ ρ ρ ρ= = + + +Z

p

RT
e f g hin

in
in

2
in in

4
in

3

(16)

To investigate the validity of eq 16, the calculated internal
compressibility factor obtained from an empirical EoS may be
fitted by this equation. Figure 2 shows how well eq 16 is fitted
onto the internal compressibility factor of the 180 K isotherm
of argon (R2 = 0.9996), compared to the fitting of eq 3a with R2

= 0.9797. Table 5 shows the parameters of eqs 13 and 16 along
with the coefficients of determination of fitting and AAD% of
pressure for the given isotherms of argon. Note that the AAD%
is less than 8.9 and R2 > 0.993 for eq 16, while those values are
22.6 and 0.945, respectively, for eq 3a (see Table 5). Since eq 2
well fits onto the compressibility factor (see Figure 1), to obtain
the coefficient of eq 16 we have used the following constraint

= −h hin th (17)

As shown in Table 5, eqs 13 and 16 well fit onto the Zth and
Zin, respectively, for all isotherms, except those supercriticals
close to the critical temperature (i.e., 151, 160, and 165 K). The
coefficients of determination for similar fittings for some
isotherms of N2, H2O, and CH4 are summarized in Table 6. As
in Table 5, from the results given in Table 6, we may conclude
that unlike eqs 3a and 3b, eqs 13 and 16 represent Zth and Zin

well, respectively, except for isotherms nearby the critical
isotherm.

5. CRITICAL REGION
Even though EoS-III is accurate for all types of solids and fluids,
it shows a significant deviation for supercritival isotherms near
the critical temperature. The coefficient of determination of
fitting pvT data onto EoS-III for different isotherms are shown
in Figure 5 for Ar, NH3, CH4, N2, CH3OH, and C4H10 fluids.

One may notice that the fitting for spherical or almost spherical
species (Ar, NH3, CH4, N2, and CH3OH) is well done with R2

> 0.999, except for isotherms within 1 ≤ Tr = T/Tc ≤ 1.1.
However the upper reduced temperature may be larger for the
cylindrical molecules, like C4H10.
The aim in this section is to modify EoS-III in such a way

that it well presents the pvT data of real fluids within the critical
region, as well. We may start from the RK-EoS, whose density
expansion is
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where b and a/RT3/2 are related to the repulsion and attraction
interactions among molecules, respectively. For a simple fluid
like Ar, with no long-range attractions, due to the balance of
attraction and repulsion forces, the coefficient b − a/RT3/2 (and
its corresponding coefficient in the vdW-EoS, i.e., b − a/RT) is
expected to vanish.19 Therefore, all odd powers of ρ in eq18
become zero, then it leads to the LIR-EoS,19 if the higher order
terms are discarded

ρ ρ= + +Z A B1 2 4 (19)

where A and B are temperature dependent parameters. The fact
that on the basis of EoS-III the ρ term exists, while the ρ3 term
is absent, we may expect that the coefficient b(1 − a/bRT3/2) is
not zero but is small, in such a way that if it is multiplied by
b2ρ3 it becomes insignificant (bρ < 1). Note that for the same
reason, all coefficients of the ρn terms with n > 4 are
insignificant and therefore not appear in EoS-III.

Figure 5. Coefficient of determination for fitting eq 2 onto pvT data of
some given fluids (the lines are drawn to guide the eye).
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However, for the critical region (isotherms within 1 ≤ T/Tc
≤ 1.1, for the spherical or near spherical molecules), due to
very long correlation length, we may expect that the attraction
contribution, a/RT3/2, is significantly larger than the repulsion
contribution, b, in such a way that the ρ3 term has to be
included, which leads to

α ρ α ρ α ρ α ρ= + + + +Z 1 1 2
2

3
3

4
4

(20)

which will be referred to the modified EoS-III (EoS-MIII).
Owing to the fact that the long-range correlation is given a
more significant weight, compared to EoS-III, we may expect
that EoS-MIII becomes more accurate for the critical region. To
examine such expectation, we shall see how well this EoS fits
onto the values obtained from the empirical EoS. Table 7

shows the superiority of EoS-MIII over EoS-III in fitting onto
the data obtained from the empirical EoS69 of fifteen different
fluids within the critical region. We have fitted EoS-III, EoS-
MIII, and EoSCF + RG39 to pvT data of ethane70 for three
isotherms (310, 400, and 500 K) to obtain their coefficients.
Having the coefficients, we may calculate the pressure given by
each EoS and compare to that of EoSCF + RG.38 The results
are compared to experimental values in Figure 6. Similar
comparison has been carried out for the 315 and 350 K
isotherms of CO2.

69 The deviation curves for EoS-MIII, EoS-
III, LIR-EoS, and CPR-EoS37 are shown in Figure 7, and AAD
% of pressure for each EoS is given in Table 8. The superiority
of EoS-MIII over the other EoSs may be noticed from Figure 7

Table 7. Coefficient of Determination and the Average
Absolute Percent Deviation of Pressure for EoS-III and EoS-
MIII for Given Isotherm(s) Nearby the Critical Temperature

EoS-III EoS-MIII

T (K) R2 AAD% R2 AAD%

H2O (647.14)a 650 0.99571 10.391 0.99962 2.4567
700 0.99735 4.4980 0.99988 0.99843

O2 (154.59) 160 0.99304 3.0528 0.99974 0.32437
180 0.99633 1.7365 0.99983 0.27746

CO2 (304.13) 310 0.99729 6.9240 0.99997 0.58288
330 0.99856 5.3916 0.99998 0.56799

CH3OH (512.50) 515 0.99670 11.105 0.99987 2.9143
530 0.99783 6.8425 0.99989 1.9612

CH4 (190.56) 195 0.99885 14.126 0.99995 1.4186
C3H8 (369.83) 375 0.99288 8.2261 0.99969 1.0297

390 0.99394 4.5040 0.99972 0.53624
C7H16 (540.20) 550 0.99258 3.7364 0.99965 0.51680
C6H6 (562.05) 567 0.99301 4.3414 0.99950 0.57025

580 0.99086 3.7804 0.99953 0.43743
Ar (150.87) 151 0.99713 12.824 0.99995 1.5043

160 0.99825 8.8404 0.99998 0.82493
Xe (289.77) 295 0.99605 11.563 0.99985 2.1842

310 0.99731 16.283 0.99988 2.1431
NH3 (405.50) 410 0.99832 5.7354 0.99990 1.2321
R114 (418.78) 425 0.98792 10.629 0.99796 1.5179
R134a (374.18) 380 0.98786 4.1149 0.99946 1.3831
R218 (345.10) 350 0.98463 5.0491 0.99771 0.76717

380 0.99132 4.4172 0.99898 1.3793
SF6 (318.69) 323 0.98770 4.7460 0.99910 0.80851

330 0.98947 4.2032 0.99941 0.74003
aCritical temperatures taken from ref 72 are given in parentheses.

Figure 6. Calculated pressure against density for the supercritical
isotherms of ethane obtained from EoS-MIII (solid curve), EoS-III
(dotted curve) and EoSCF + RG (dotted−dashed curve). Exper-
imental values for 310 (□), 400 (○), and 500 K (△) isotherms are
shown.

Figure 7. Percent pressure deviation of EoS-III (■), EoS-MIII (▲),
LIR (×),and CPR-EoS (●) for (a) 315 and (b) 350 K isotherms of
CO2.

Table 8. Average Absolute Percent Deviation of Pressure for
315 and 350 K Isotherms of CO2 Calculated from EoS-MIII,
EoS-III, LIR-EoS, and CPR-EoS, along with the Maximum
Deviation for Each Isotherm

AAD% (max)

T = 315 K T = 350 K

EoS-MIII 0.6340(1.576) 0.1632(0.3575)
EoS-III 1.871(4.009) 0.3354(0.8581)
LIR-EoS 6.794(11.96) 0.7007(0.8546)
CPR-EoS 3.967(9.144) 2.227(4.710)
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and Table 8. Note that the quantity AAD% for EoS-MIII is
smaller than that for other EoSs at least by a factor of 3.

6. THERMODYNAMIC PROPERTIES OUTSIDE THE
CRITICAL REGION

Using eq 16, we may calculate the internal pressure, from which
the internal energy can be derived for each isotherm as

∫
ρ

ρ
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where F(T) is the ideal contribution to the total internal energy
and for a monatomic ideal gas like argon is equal to 3RT/2 per
mole. It means that the internal energy is a quadric function in
terms of density for each isotherm. To investigate the accuracy
of eq 21, the internal energy for the 400 K isotherm of argon
has been calculated using the coefficients of eq 16 for this
isotherm (ein = 1.568 × 10−3 (L/mol)2, f in = −4.527 × 10−2 L/
mol, gin = 2.704 × 10−6 (L/mol)4, and hin = −1.053 × 10−4 (L/
mol)3). Percent deviation of the calculated internal energy
using eq 21, compared to the empirical value,69 is shown in
Figure 8. We see that the predicted values are very accurate.

By having E from eq 21 and pv from eq 2, the enthalpy may
be given by
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Figure 8 also shows the accuracy of eq 22 (e = 6.310 × 10−4 (L/
mol)2, f = 2.989 × 10−3 (L/mol), and g = 1.427 × 10−6 (L/
mol)4) in predicting the enthalpy of 400 K isotherm of Ar, with
the percent deviation less than 0.3.
Also, we may obtain the heat capacities at constant volume

and constant pressure, Cv and Cp, simply by taking partial
derivatives of E and H with respect to T, respectively
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where the prime signs show the temperature derivatives.
Finally, we may obtain entropy as a function of density for an

isotherm as
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where S0(T) is the ideal contribution to the total entropy and
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We see that each thermodynamic property mentioned above
can be expressed as a quadric function in density for each
isotherm. Figure 9 shows such dependencies for the 250 K
isotherm of nitrogen,69 along with the coefficients of
determination for the fittings.

7. SUMMERY AND CONCLUSION
A simple three-term EoS, namely EoS-III, has been found to be
accurate for describing pvT behavior of all types of fluids in
wide temperature and pressure ranges, except for the isotherms
within the critical region. In this paper, the validity of similar
three-term expressions for both thermal and internal pressures
have been investigated.
Using the empirical EoS for some fluids, the thermal pressure

has been calculated and fitted onto eq 3a. Also, the internal
pressure has been obtained by subtracting the thermal pressure
from the total pressure and fitted it onto eq 3b. We have
noticed that, unlike the total pressure, neither its thermal nor its
internal components fit onto eqs 3a and 3b, respectively, if a
wide density range is considered (see Tables 2 and 3).
Then, the density dependencies of thermal and internal

pressures have been investigated by several approaches. The

Figure 8. Percent deviation of the calculated internal energy (⧫) and
enthalpy (▲), compared to the empirical values69 for the 400 K
isotherm of argon.
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thermal pressure of a real fluid has been calculated from the
HS-EoS, namely the Carnahan−Starling EoS, but with two
modifications: (1) the coefficients of EoS are considered to be
temperature dependent and (2) molecular diameter also is
assumed to be temperature dependent (Figure 3). The latter
dependency is due to the fact that the real molecules can
penetrate each other, especially at high temperatures. We have
then used the MCS-EoS to present the thermal pressure which
is found to be accurate in a wide density range, at least for Ar
(see Figure 4). If the MCS-EoS is expanded in terms of density,
all powers of density are present then the thermal pressure,
unlike eq 3a, includes the other terms of density, as well. Also,
using a quite accurate51 two-parameter RK-EoS, it is found that
all powers of density should be contributed in the thermal
compressibility factor and hence in the thermal pressure. On
the basis of these two approaches we have concluded that it is
at least necessary to add a cubic term in density to the
expression for Zth, however, the other terms in density may be
also important especially in the critical region (see Tables 5 and
6). Therefore, eq 3a has been modified for isotherms far from

the critical temperature by adding the ρ3 term. Finally the
calculated Zth obtained from the accurate empirical EoS has
been fitted onto modified eq 3a (eq 13) for four different fluids
and it noticed that eq 13 is accurate for isotherms not in the
critical region (Figure 1 and Tables 5 and 6). Also, in order to
find an appropriate expression for the internal compressibility
factor, we used RK-EoS again and obtained the internal
pressure from pin = p − pth. In this case again we have shown
that all powers of density are present which is in accordance
with the calculated Zin obtained from the empirical EoS (see
Figure 2 and Tables 5 and 6). Note that for isotherms, not in
the critical region, although the vdW-EoS can fairly fit onto
experimental pvT data; the linear density dependency of the
internal compressibility factor predicted by this equation is
quite different from experimental values (see Figure 2). So, eq
3b was modified to eq 16 to which simply the ρ3 term is added.
However eq 16 is more accurate for the isotherms far from
critical point, compared to those within the critical region (see
Tables 5 and 6). Owing to the fact that eqs 13, 16, and 2 are
accurate for the thermal, internal, and total compressibility
factor, respectively, for an isotherm not nearby the critical
temperature, we may conclude that hin = −hth.
Let consider the Virial EoS,
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from which the thermal and internal pressures may be obtained
as
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where the prime signs show the temperature derivatives. Note
that if due to balance of attractive and repulsive forces B2 is
insignificant (B2 ≈ 0), then on the basis of the Virial EoS, the
term ρ2 appears on both thermal and internal pressures, but not
in the total pressure. A similar situation occurs for the other
terms. On the basis of EoS-III, we may conclude that the
clusters with four particles have insignificant contribution in the
total pressure (note that the ρ4 term in EoS-III does not exist).
Also, the same contribution for the clusters with more than five
particles are insignificant. Therefore, it is reasonable to take
only the clusters with one, two, and three particles, to calculate
the total pressure, such clusters are those which are usually
taken into account in the molecular dynamics simulations.
We have noticed that EoS-III is not able to describe the

volumetric behavior of the fluids within the critical region
(more specifically for isotherms within 1 ≤ Tr ≤ 1.1 of spherical
and near spherical species and perhaps for a larger temperature
range for the cylindrical molecules; see Figure 5). We have
modified EoS-III in such a way that it accurately presents the
isotherms within the critical region, by using the fact that all
powers of density are present in an accurate semiempirical RK-
EoS. It has been noticed that for a simple fluid like argon, with
no long-range attractions, all odd powers of density in RK-EoS
may be vanished, because the attraction and repulsion
interactions cancel out each other, using a similar argument
given for LIR-EoS19 by using vdW-EoS. Due to the long-range
correlations in the critical region, such cancelation is not
expected to happen, therefore the magnitude of the ρ term in
eq 18 and hence that of the ρ3 term in this equation are

Figure 9. Density dependencies of (a) internal energy, (b) enthalpy,
(c) entropy, and heat capacity at (d) constant volume and (e) constant
pressure, each as a quadric function, for the 250 K isotherm of N2
(experimental data (○) are taken from ref 69).
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significant. However, the ρn terms with n > 4 may be discarded,
because the quantity 1 − a/bRT3/2 must be multiply by the
small (bρ)n term to give the coefficient (bρ < 1). The accuracy
of such equation, EoS-MIII, for some fluids are shown in
Figures 6 and 7, as well as Table 7, even though the cubic
equations, which are also known as van der Waals equation’s
family, which are equivalent to a (mean field) Landau theory,
fail to predict the pvT behavior next to the critical point.72

Finally, the obtained expression for the internal compressi-
bility factor along with EoS-III is used to derive internal energy,
enthalpy, entropy, heat capacity at constant volume, and
constant pressure each as a quadric function in density (Figure
9). In order to obtain the temperature dependency of these
properties, one should know the temperature dependency of
coefficients of eq 16 and their temperature derivatives; see eqs
21−29. This task will remain for the future. Also, the
expressions for such properties are more complicated in the
critical region, which will be investigated in the future.
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