
2200 Spring 2005.   Fundamental Boundedness Results 
 
We have stated the following results about boundedness today, and sketched one proof. 
 
Definition: An interval (a,b) or [a,b] or (a,b] or [a,b) is called bounded, if and only if both a and 
b are finite real numbers. 
 
Thus the only unbounded intervals are of form  (a,∞), [a,∞), (-∞,b), (-∞,b], or (-∞,∞).  
 
Definition:  A real valued function f  with domain the interval I, is bounded on I if and only if 
the set of values f(x) takes on, as x runs over I, is contained in some bounded interval; mopre 
precisely, if there are some numbers L, K such that for all x in I,  L ≤ f(x) ≤ K. 
 
I.e. the values of f, do not become infinitely big, either positively or negatively, as x runs all over 
I, even if I itself may be unbounded. 
 
Examples: 
i)  The function cos is bounded for I = (-∞,∞), since the values cos(x) all lie in the bounded 
interval [-1,1].  I.e. it is the y values that matter, not the x values, at least here in the definition of 
boundedness. 
 
Thus cos is bounded on any smaller interval I on which we consider it as well. 
 
ii)  The function  x2 is unbounded on the interval I = [0,∞), since the values x2 become infinitely 
large as x gets large positively. 
 
iii)  The function x2 is bounded on the interval [-100,100], since for x's in that interval x2 always 
lies in the bounded interval [0,  104]. 
 
iv) The function tan is unbounded on the interval (-π/2, π/2), since tan(x) = sin(x)/cos(x) becomes 
infinitely large as x approaches π/2, since sin(π/2) = 1, and cos(π/2) = 0.  In particular tan(x) does 
not have a finite limit as x approaches π/2. 
 
v) The function f(x) = tan(x) for x in (–π/2,π/2) and f(π/2) = 0 = f(-π/2), is also unbounded on the 
interval [-π/2, π/2], but is not continuous at the end points of the interval. 
 
Example iv) shows that the set of values of a continuous function may be unbounded even when 
the domain is bounded.  I.e. even when the x's remain bounded, the f(x)'s can become unbounded.  
The domain interval is however open in this example.  Example v) shows a discontinuous 
function can also be unbounded on a closed bounded domain interval. 
 
We want to give a set of criteria that describe one important situation when the set of values of a 
function is bounded. 
 
Theorem:  If f is a real valued function on a domain interval I such that: 



 
1)  I is both closed and bounded, i.e. I = [a,b] where a and b are finite real numbers, and 
2) f is continuous everywhere on I = [a,b], 
 
then f is bounded on [a,b]. 
 
I.e. then there exists a positive number K such that for every x in [a,b], we have -K ≤ f(x) ≤ K. 
 
Remark: 
This shows that unboundedness of a function can only be produced in one of the following ways, 
(as in the previous examples):   
i) on an unbounded domain interval, say  I = (a,∞), 
ii) on an open ended bounded domain interval, say (a,b), 
iii) or by a discontinuous function, (this can occur on any interval). 
 
 
Here is my "proof" of the big theorem above:  the proof proceeds by contradiction.  I.e. I will 
show that if a function f is unbounded on a closed bounded domain interval, then the function f 
must be discontinuous at some point of that interval.  I will give the proof only for a special case, 
where say I = [0,1]. 
 
First a preliminary result: 
Lemma:  If f is continuous at a, then f is bounded on some interval containing a. 
proof:  This is immediate from the definition of continuity.  I.e. if f(a) = c say, then there is some 
interval (a-d,a+d) on which f changes by less than 1.  I.e. for all x in the open interval (a-d,a+d), 
f(x) lies between f(a)-1 and f(a)+1.  Thus f is bounded on the interval (a-d,a+d).  QED. 
 
Remark:  Intuitively, this says of f is finite at a, and if for x near a, we have f(x)is close to f(a), 
then f cannot get infinitely big for x near a. 
If we say the same thing backwards, we get: 
 
Corollary:  If f is unbounded on every interval containing a, then f cannot be continuous at a, 
indeed f cannot even have a finite limit at a. 
proof:  same argument.  QED. 
 
 
OK now we are ready to prove the theorem.  What we will prove is, if f is unbounded on the 
interval [0,1], then there is some point in that interval at which f is not continuous.  When you 
say this backwards, it proves that if f is continuous at every point of [0,1], then f must be 
bounded on that interval. 
 
Now we are going to construct a real number by giving its decimal expansion.  Since the decimal 
expansion of a real number is usually infinite, we cannot actually write down all the entries but 
we will tell a rule for finding them, one at a time. 
 
OK, assume f is unbounded on the interval [0,1].  Then subdivide the interval into ten smaller 



intervals  [0,.1], [.1,.2],.....,[.8,.9], [.9,1], and ask whether f is unbounded on any of these.  Well it 
must be, because if f were bounded on each one of these intervals, there would be ten different 
bounds for f on these intervals, but we could just take the largest of those ten bounds and that 
would be a bound for f on the whole interval. 
 
I.e. since there is no bound for f on the whole interval, there must be some smaller interval on 
which there also is no bound.  Indeed there might be more than one, but there must be at least 
one.  Suppose then that f is unbounded say on the interval [.2,.3].  Then the number we are 
looking for starts out as .2. 
 
Now subdivide this smaller interval again into ten smaller intervals, 
 
i.e. into the intervals [.2.21]. [.21,.22], [.22,.23],.....,[.28, .29], [.29, .3]. 
 
Now again there must be at least one of these intervals on which f is unbounded for the same 
reason as before.  Say f is unbounded on [.24, .25].  Then take as the next part of the decimal 
expansion of our desired number .24. 
 
Keep going forever, and we produce an infinite decimal expansion, say c = .2467911530548..... , 
i.e. a real number c in our interval [0,1].  Now f was unbounded on every interval whose left end 
point was a finite part of this decimal, and whose right end point was the next larger roundup 
with the same beginning terms.  If we look at the first n terms of the decimal expansion, that 
interval had length only 1/(10)^n, and contained our number c, and also f was unbounded on that 
interval.   
 
Since f is unbounded on a sequence of intervals, all containing c, and having lengths approaching 
zero, it follows that f cannot be not bounded on any finite interval containing c.  I.e. if f were 
bounded on some finite interval containing c, then eventually any number with the same first n 
terms as c would lie in that interval, but we have seen that f is not bounded on any interval of 
numbers with the same first n terms as c.  I.e. since f is not bounded on any interval of form   
(c - 1/(10)^n , c+ 1/(10)^n), f cannot be bounded on any interval containing c.  Thus by our earlier 
remarks, f cannot be continuous at c.  But one can see, I hope, that c does belong to the interval 
[0,1].  Hence f was not continuous on that interval after all. 
 
Thus if any function f is continuous at all points of [0,1], then f is actually bounded on [0,1].  
QED 
 
Remark:  This is considered to be the hardest theorem in the whole subject, so if you got some 
feeling for why it is true, good for you! 
 
 
 
 
  


