
2250: Elementary proofs of big theorems 
 The first theoretical result is the Intermediate Value Theorem (IVT) for continuous 
functions on an interval. 
Theorem: If f is continuous on then interval I, then the set of values f assumes on I is also an 
interval.  I.e. if a,b are points in I, then any number between f(a) and f(b) is also a value of f, 
taken at some point between a and b. 
proof:  We assume f(a) < 0 and f(b) >0, and try to find c with f(c) = 0. We assume that every 
infinite decimal represents a real number. 
 
Lemma: If f is continuous at c and f changes sign on every interval containing c, then f(c) = 0. 
proof:  This is the contrapositive of the fact that if f is positive (or negative) at c and continuous 
at c, then f is positive (or negative) on some interval containing c. This is immediate from the 
definition of continuity, and is an important exercise in understanding that definition.  QED. 
 
Thus it suffices to find a real number c such that f changes sign on every interval containing c.  
Assume [a,b] = [0,1]. 
 Since f(0) < 0 and f(1) > 0,  then f changes sign on some interval of form [r/10, (r+1)/10].  
let c start out as the decimal .r. 
 Then since f(r/10) <  0 and f((r+1)/10) > 0, f changes sign on some interval of form 
[(10r+s)/100, (10r+s+1)/100].  Then c continues as the decimal .rs. 
 Continuing in this way forever, we obtain an infinite decimal,  i.e. a real number  
c = .rs....., in the interval [0,1], such that f changes sign on every interval containing c.  Hence 
f(c) = 0.  QED. 
 
 We know the continuous image of an open bounded interval may be neither open nor 
bounded.  But the next big theorem says that the continuous image of a closed bounded interval 
is also closed and bounded.  We do it in two steps. 
 
Theorem:  If f is a function which is continuous everywhere on a closed bounded interval [a,b], 
then f is bounded there. 
proof: We prove it by contradiction, i.e. assuming f is unbounded leads to finding a point where 
f is not continuous. 
 
Lemma: A function which is continuous at c, is also bounded on some interval containing c. 
proof:  This is immediate from the definition of continuity.  E.g. if e = 1, by continuity of f at c, 
there is an interval I containing c where the values of f lie between f(c)-1 and f(c)+1.  Thus f is 
bounded on I.  QED. 
 
Hence it suffices to show that if f is unbounded on [a,b], then there is a point c of [a,b] such that f 
is unbounded on every interval containing c. 
 Assume [a,b] = [0,1], and that f is unbounded on [0,1].  Then there is some interval of 
form [r/10, (r+1)/10] where f is unbounded.  Start out the decimal c as .r. 
 Then there is some interval of form [(10r+s)/100, (10r+s+1)/100] where f is unbounded.  
Continue the expansion of c as the decimal .rs. 
 Continuing forever, we construct an infinite decimal c = .rs......, in the interval [0,1], such 
that f is unbounded on every interval containing c.  Thus f is not continuous at c.  QED. 



 
Theorem:  If f is continuous on the closed bounded interval [a,b], then f assumes a maximum 
value there. 
proof: We know the set of values f takes on [a,b] is a bounded interval.  If not closed it has form 
(c,d) or [c,d) or (c,d].  If of form [c,d) say, then the continuous function 1/(f(x)-d) is unbounded 
on [a,b], contradiction. QED. 
 
Longer, more painful argument: 
We know f has an upper bound on [a,b].  We want a smallest one. 
Lemma:  Every non empty bounded set S has a smallest upper bound c. 
proof: The proof is trivial if S is a finite set, so assume I particular that S does not consist only of 
the point 0.  Then S is a non empty bounded infinite subset say of [0,1], then 1 is an upper bound 
for S but 0 is not, so there is some number of form r/10 which is not an upper bound of S, but 
such that (r+1)/10 is an upper bound.  Let the decimal c start out as .r. 
 Then there is some number of form 10r+s which is not an upper bound but such that 
(10r+s+1)/100 is an upper bound.  Continue c as .rs. 
 Continuing forever, we construct a real number c = .rs...., such that no smaller number is 
an upper bound, but every larger number is.  Hence c is the smallest upper bound for S.  QED. 
 
 Now if K is the smallest upper bound of all the values of f on [a,b], it will suffice to show 
f assumes the value K on [a,b].  But if not, then  g(x) = 1/(K-f(x)) would be both continuous and 
unbounded on [a,b], which contradicts the previous result.  QED. 
 
 A similar criterion for open intervals is this:  
Cor: If f is continuous on (a,b), and f(x) approaches plus infinity as x approaches a, and also as x 
approaches b, then f has a global minimum on (a,b).  (Apply the previous result to a suitable 
closed interval of form [a-e, b-e].) 
 For more general max/min problems on open intervals, it helps to have a little more 
understanding of how the derivative of a function affects the behavior of the graph .  For some 
reason the following simple principle seems not to be stated in standard books. 
 
Theorem:  A continuous function on an interval cannot change direction except at a critical 
point.  I.e. f is strictly monotone on any interval not containing a critical point. 
proof:  If has no critical points on an interval, then f is not constant.  If f is not monotone then 
the IVT implies that f takes the same value twice on that interval, say f(a) = f(b) for some points 
a < b in the interval.  Then f has both a maximum and a minimum on the interval [a,b] and since 
f is not constant, one of these extrema occurs at some c with a < c < b.  Then c must be a critical 
point, as we know.  Since there are no critical points, in fact f is monotone.  QED. 
 
 This gives us many easily verifiable criteria for finding maxima and minima on open 
intervals.  Here is a typical one. 
Cor:  If f is differentiable on (a,b) and has only one critical point c in that interval, then f(c) is a 
global minimum for f on (a,b) provided there are points u, v, with  a< u< c < v < b, i.e. u and v 
are on either side of the critical point c, and f(c) <  f(u) and f(c) < f(v). 
proof:  f is monotone and greater somewhere on each side of c, hence greater everywhere. QED. 
 



 More generally if f has a finite number of critical points c1,….cn, and f is higher 
somewhere to the left of the first critical point c1 (higher than at c1), and also higher somewhere 
to the right of the last one cn, then f has a global minimum at some critical point. 
 
 Finally we have: 
Cor: If f' = 0 zero everywhere on an interval I, then f is constant on I. 
proof:  By the argument in the proof of the previous theorem, if a differentiable function h takes 
the same value at two different points, then h’ = 0 somewhere in between.  Applying this to a 
difference h = f-g, shows two differentiable functions f,g taking the same value at two points 
must have the same derivative somewhere in between.  Since for any a,b in I, f agrees at a and at 
b with the linear function passing through (a,f(a)), (b,f(b)), whose slope is everywhere equal to 
([f(b)-f(a)]/[b-a]), the graph of f must have that same slope at some c between a and b.  In 
particular if f(a) differs from f(b), there is a c with a < c < b and f’(c) = ([f(b)-f(a)]/[b-a]), which 
is not zero.  QED. 
 
Cor:  If f, g have the same derivative everywhere on an interval, then f differs from g by a 
constant on that interval. 
proof: Since (f-g)' is zero everywhere, (f-g) must be constant. QED.  
 
Cor: If f has no critical points on an interval (a,b) and if f'(c) > 0 at some point c of (a,b), then f 
is strictly increasing on (a,b). 
proof:  By definition of the derivative, f is increasing at c, and f is monotone on (a,b), so f is 
increasing everywhere on (a,b).  QED. 
 
 


