
2300H  Implicit functions 
This is the study of functions y(x) which satisfy some equation, and how that equation can be used to 
help compute the derivative of the function.  It is also concerned with recognizing which equations 
are satisfied by some functions.  I.e. sometimes we start from an equation and try to use it to define 
and study a corresponding function. 
 
Question 1: Suppose we know that a certain function satisfies an equation, for example suppose we 
know that the function y(x) satisfies the equation y4(x) -y2(x) + x2 = 0, can we use this equation to 
find the derivative of the function?  Well, yes and no.  We can just differentiate both sides of the 
equation using the chain rule, getting 4y3(x).y’(x) -2y(x).y’(x) + 2x = 0.  Then since the y’ terms are 
all linear we can easily solve this equation for y’, getting y’ = (-2x)/{4y3(x) -2y(x)}.  This is called 
“implicit differentiation”.   I.e. we differentiated an equation satisfied by y, and got an equation for 
y’, and “solved it” for y’.  But is this really finding the derivative y’?   
 
We have “solved” for y’, but the answer still involves y, so if we did not know a formula for y, then 
we still do not have a formula for y’.  So it is misleading to say that you can find y’ even when you 
cannot find y.  Thus I would disagree with the statement that the answer is yes found in some books.  
Nonetheless this procedure is useful.  For example, even if we cannot solve for the function y(x) 
completely, we might be given the value of the function at a single point.  In this case, for instance 
we might know that y(sqrt(3)/4) = 1/2.  Then because we know both x = sqrt(3)/4 and y = 1/2 at this 
point, we could use the formula for y’ above to find the slope of the tangent line to the graph of y(x) 
at this point.  
 
I.e. plugging (x,y) = (sqrt(3)/4, 1/2) into the formula y’ = (-2x)/{4y3(x) -2y(x)}, gives y’ =  
(-sqrt(3)/2) / {4/8 - 1} = sqrt(3).  Thus the tangent line to the curve y4 -y2 + x2 = 0 at the point 
(sqrt(3)/4, 1/2) has equation y - 1/2 = sqrt(3)(x- sqrt(3)/4); i.e. y = sqrt(3)x -3/4 + 1/2 = sqrt(3)x -1/4.  
Do you agree? (or did I slip up?) 
 
One example of a function y(x) that satisfies the equation above is y1(x) =  
sqrt{1+ sqrt(1-4x2)}/sqrt(2), which is defined and differentiable for 0 < x < 1/2.  There are 3 other 
such functions on that domain, that satisfy the same equation, namely: y2(x) = -y1(x), y3(x) =  
sqrt{1- sqrt(1-4x2)}/sqrt(2), and y4(x) = -y3(x).  Since they all satisfy the same equation, their 
derivatives all satisfy the same formula.  But their derivatives are not the same.  How can that be?  
 
Well, the formula for the derivative of y1 has y1 in the formula, while the formula for the derivative 
of y2 has y2 in its formula, so since these functions are different, their derivatives are different.  I.e. 
above we found the tangent line to the curve at the point (sqrt(3)/4, 1/2), which is on the graph of y3. 
 
I.e. y3(sqrt(3)/4) = 1/2.  On the other hand, y1(sqrt(3)/4) = sqrt(3)/2.  So the derivative formula y’ = 
(-2x)/{4y3(x) -2y(x)} at this point gives (-sqrt(3)/2) / (sqrt(3)/2) = -1, I think.  Thus the tangent line 
to the graph of y1 at the point (sqrt(3)/4, sqrt(3)/2) has equation  y- sqrt(3)/2 = -(x-sqrt(3)/4) = -x + 
sqrt(3)/4, or y = -x + (3sqrt(3))/4.  Is that right? 
 
Question 2:  Suppose we are just given the equation, y4 -y2 + x2 = 0, and we are not told whether 
there is any function y(x) satisfying it.  Can we decide this just from analyzing the equation?  Well, 



again yes and no.  This equation defines a curve in the plane, and we are asking whether some part 
of that curve looks like a graph of a differentiable function.  I.e. whether some part of the curve 
satisfies the vertical line property (after throwing away some other part), and then whether that part 
is actually the graph of a differentiable function. 
 
One problem is that there might not be any points on the curve!  For example consider x4 + y4 + 
x2y2 + 64 = 0.  The left side is always positive, at least equal to 64, so it can never be 0.  So actually 
there is no function y(x) defined for any x’s whatsoever, that satisfies this equation.  And it might 
not always be so obvious whether there are any points on a given equation.  But if we can find at 
least one point satisfied by our equation, then we can tell whether the part of the curve defined by the 
equation, which is near that point, does or does not look like the graph of a differentiable function. 
 
All you do is take the derivative implicitly and then plug in your point and see whether you get a 
finite number or not.  For example the point (0,1) does satisfy the equation y4 -y2 + x2 = 0.  Taking 
the derivative implicitly as before, and pretending that y is a function of x, we get y’ = (-2x)/{4y3 -
2y} = x/(y-2y3).  Now we plug in (0,1) and we get 0/(-1) = 0.  This is a perfectly good number, so 
the “advanced theorem” mentioned in our book, guarantees that the part of the curve defined by the 
equation y4 -y2 + x2 = 0, and lying near the point (0,1), does satisfy the vertical line test, i.e. is the 
graph of some function, and that function is differentiable.   
 
Moreover, then it follows that the derivative of that function satisfies the equation we just found, i.e. 
y’ = x/{y -2y3}.  So basically, given any equation, IF you have  a point on it, then go ahead and take 
the derivative implicitly, and plug in your point.  If you get a finite answer, then you have nothing to 
worry about, i.e. the equation does define a nice curve near your point, the curve does have a non 
vertical tangent line, and you can find the equation of that tangent line by using your implicit 
formula.  More precisely, there is some small rectangle centered at your point such that the part of 
the curve which is inside the rectangle, is the graph,of a differentiable function y(x) whose derivative 
y`(x) satisfies the implicit derivative equation. 
  
But what if you do not get a nice answer when you plug in your point?  For example, (1/2, 1/sqrt(2)) 
satisfies the equation y4 - y2 + x2 = 0, but when we plug it into the derivative equation x/{y -2y3}, 
we get (1/2)/0, not a good answer.  Probably none of the book’s problems will come out this way, 
since they will try to avoid such points, but in fact there is a nice tangent line there, but it is vertical.  
Look at the picture [on page 170, Thomas/Finney, 9th edition], of the figure “eight curve”.  You 
could understand that point better by pretending that x was a function of y, and taking the derivative 
dx/dy implicitly.   
 
Then you would get (remember y is the variable now, and x(y) is the function of y):  
4y3 - 2y + 2x(dx/dy) = 0, so dx/dy = (2y-4y3)/2x = (y-2y3)/x.  Note this is exactly the reciprocal of 
what we got before.  When we plug (1/2, 1/sqrt(2)) into this we get 0/(1/2) = 0.  So the curve in the 
picture does pass the horizontal line test near this point, i.e. the curve is the graph of x as a function 
of y, and the derivative of that function is 0.  Either way the equation of the tangent line is x = 1/2. 
 
A more interesting (bad) point is (0,0).  This also satisfies the equation y4 -y2 + x2 = 0, but when we 
plug it into the derivative formula for y’, we get y’ = x/{y -2y3} = 0/0, an even worse answer.  
Looking for x as a function of y will not help this time since the reciprocal of (0/0) will be just as 



bad.  In fact this means that there is no rectangle centered at the point (0,0) in which the curve looks 
either like the graph of a differentiable function y(x) of x, or of a differentiable function x(y) of y.  
Looking at the picture of the “eight curve” on page 170 shows what is wrong.  No matter how small 
a rectangle you center at (0,0), the part of the curve inside it still does not pass either the vertical or 
the horizontal line test.  [Near the center point, an “eight” looks like an “x”, hence not a graph.] 
 
In this course you will always be given the equation and a point, or if the equation is easy enough 
you may only be given x and have to solve for y.  (That often happens in related rates problems.)  
You have to take the derivative implicitly, plug in the point and decide whether the curve has a 
tangent line there or not and write the equation if it does.  If you get 0/0 it means either you did the 
calculation wrong or we messed up and gave you a bad point. 
 
To sum up: if you are given a (polynomial) equation F(x,y) = 0 in x and y, and a point (a,b) 
satisfying the equation, and you want to know whether there exists a differentiable function y(x) 
defined on some neighborhood of a, with y(a) = b, and whose derivative can be computed from that 
equation, just take d/dx of the whole equation and solve for dy/dx in terms of x and y.  Then plug in 
the point (x,y) = (a,b).  If you get a finite number c, then the answer is yes, there is such a function 
y(x), and also y’(a) = c.  Moreover if you draw a small enough rectangle in the x,y plane centered at 
the point (a,b), then the part of the curve defined by the equation F(x,y) = 0 which lies inside the 
rectangle is the graph of such a function y(x).   
 
On the other hand if you already know there is such a function y(x), and you also know it satisfies 
the equation F(x,y) = 0, then you may or may not be able to find its derivative from this equation.  
I.e. if when you solve the equation for dy/dx and plug in (a,b) you get a finite number c, then this 
number c is the derivative y’(a) of your function.  However if you get 0/0 when you plug (a,b) into 
your formula for dy/dx, but you know y(x) has a derivative at a, it just means the equation you are 
using is not good enough to compute its derivative.  For example, the function y = x has derivative 1 
everywhere, and satisfies the equation y2 - x2 = 0 everywhere.  However when I solve this equation 
for dy/dx, I get 2yy’ = 2x, so y’ = x/y.  Thus at the point (0,0) this does not give me the derivative 1, 
although it works at all other points.   
 
Worse things can happen, I could have used the equation (y-x)2 = 0.  Then I get 2(y-x).y’ = 0, so y’ 
= 0/(y-x).  Now since our function is y = x, thus y-x is always zero, This gives 0/0 for the derivative 
at every point.  Thus this equation does not work for finding the derivative at any point.  So basically 
the rule is, just solve your equation F(x,y) = 0 for dy/dx and plug in your point.  If you get a finite 
number then everything is fine: i.e. the part of the curve defined by F(x,y) = 0 and lying near your 
point, is the graph of a function y(x), and the method does give the derivative of that function, hence 
does give the slope of the tangent line to that curve at that point.  If you get a result of form 3/0, or 
some other non zero number divided by zero, then the curve F(x,y) = 0 has a vertical tangent line at 
that point.  If you get 0/0, the method fails.  I.e. either the curve does not have a unique tangent line 
there or the equation is not good enough to compute it.    
 
Related rates problems: These are word problems describing a picture that you have to draw in 
order to find the equation relating your two functions.  Usually the secret to writing an equation is to 
use one of the basic geometry principles, like Pythagoras’ theorem for right triangles, or similar 
triangles, or some other proportionality principle between corresponding parts of similar figures. 
Then to complicate things further, the equation will be in terms of x and y, say, but instead of 
assuming y is a function of x, you will usually assume that both x and y are functions of time t. 



 
Then you differentiate everything with respect to t, and write an equation relating dx/dt and dy/dt.   
This is why the problems are called related rates problems, since derivatives with respect to time t 
are called rates of change.  Then they will give you enough information, e.g. one of the rates and one 
of the other measurements, to enable you to solve for the other rate.  You will need to use both 
equations, the one relating the measurements and the one relating the derivatives, that you got by 
differentiating the first one. 
 
Example: problem 18, page 177. Thomas 9th ed.  The setup here is an upside down circular cone, 
and as the water drains out, the water itself forms a shrinking cone similar in shape to the conical 
reservoir containing it.  Now they give the height of the tank as 6m and the radius of the top surface 
as 45m, and the question they ask is to find rate at which the level of the water is falling, at the 
instant when the height is 5m, given that the water runs out at a constant rate of 50m^3/min. 
 
Ok, level of water means height of water, and the rate the water runs out is the rate of change of 
volume of the water.  So they are giving us h = 5, and dV/dt = 50, and we want dh/dt. 
 
So first we need an equation involving V and h.  If r is the radius of the water at any time, and h its 
height, then the volume formula for a cone is V = (π/3)(r2h).  To get rid of r, we can use the 
similarity relation between the cone of water and the conical tank.  I.e. we get the proportionality 
equation 6/45 = h/r, or 45h = 6r, hence 15 h = 2r, so r = (15/2)h. 
 
Substituting gives V = (π/3)(r2h) = (π/3)(225/4.h^3) = (75π/4)h^3.  This is the equation relating the 
quantities V and h in the problem.  Now we differentiate this equation, i.e. take d/dt of both sides. 
 
That gives  dV/dt = (225π/4)h^2.dh/dt.   Now we substitute in dV/dt = 50, and h = 5, and we get 
50 = (225π/4)(25).dh/dt.  Solving for dh/dt, gives dh/dt = [8/(225π)].  Now this is in meters per 
minute, because the data was given in those units.  The gentlemen who wrote the book want the 
answer in centimeters per minute, but that kind of pointless nonsense annoys me. 
 
Of course there are 100 times more centimeters each minute than meters, so we can just multiply by 
100 to get their answer, 800/(225π) = 8\25\4/(9\25π) = 32/(9π) cm/minute.   
 
Now does that seem plausible?  I.e. in a minute 50 cubic meters flows out.  Since the radius is a bit 
under 40 meters, the area of that circular water surface is πr2 or about 1500π square meters.  To lose 
50 cubic meters in a minute, the height should change about 1/(30π) ≈ 1/(100) of a meter in that 
minute shouldn’t it?  i.e. about 1 cm in a minute, or roughly 32/(9π), so I believe it. 


