
Exponential and logarithmic functions 
We are concerned with making sense of expressions like ab where a and b are real numbers, and 
with deciding just what ab should mean.  We start by letting a be a positive real number, say 2.  
Then we know of course that when n is a positive integer, 2n is a “power” of 2, or 2 multiplied 
by itself n times.  I.e. 21 = 2, 22 = 2(2), 23 = 2(22), and more generally, for any positive integer 
k, 2k = 2(2k-1) = (2)(2)(.....)(2) = a product of k factors of 2.   
 
If we want to define 2x where x is a fraction such as x = 1/2, or if x = 0, or x = -3, then we have to 
decide what we want to be true about expressions like ab and use this to guide us in our choice of 
definition.   
 
The most fundamental property turns out to be this: whenever n,m are two positive integers, we 
always have a(n+m) = an.am.  This is called the “homomorphism” law for exponents.   
 
We can prove this by induction as follows: let m be any positive integer, then we want to prove 
that a(n+m) = an.am, for every positive integer n.  The principle of induction says that if we can 
prove this for n = 1, and if we can also prove that whenever it is true for one value of n, then it is 
also true for the next, then it must be true for all values of n.    
 
I.e. if we prove it for 1, then it is also true for the next value of n, so it is also true for 2.  Then 
since it is true for 2 it must also be true for the next value so it is true for 3, and so on.  In this 
way it must be true for all values of n.   
 
So we must prove two things:  
1) that our formula is true for n = 1, and  
2) whenever it is true for one value of n, it is then also true for the next value. 
 
We start by noting that for n = 1, the rule a(1+m) = a1(am) is true simply by definition of power 
notation, i.e. we defined ak to mean  a(ak-1), for every positive integer k, so taking k = m+1, we 
get that a(1+m) = a1(am) is true simply by definition.   
 
Now assume that the rule a(n+m) = an.am is true for some value of n, and we want to prove it 
must also be true for the next value, i.e. for n+1.  Thus we are assuming that a(n+m) = an.am, and 
we want to prove that a(n+1+m) = an+1.am.  But by definition, a(n+1+m) = a(an+m), which by 
assumption equals a(anam), which by associativity of multiplication equals (a.an)am, which by 
definition of power notation, equals an+1.am.   
 
Thus indeed assuming that a(n+m) = an.am is true, leads to the conclusion that a(n+1+m) = 
an+1.am is true also.  Hence a(n+m) = an.am is true for all positive integers n,m.  Conversely if 
we want this law to hold, then just knowing that a1 = a, forces a2 = a1a1 = a.a, and a3 = a1a2 = 
a.a.a, etc,..., an must equal (a.a.....a), a product of n factors of a.   



 
Thus any function f with the property f(1) = a and f(n+m) = f(n).f(m) must satisfy f(n) = an for 
all positive integers n. 
 
Now this property of exponentiation is so useful that we do not want to give it up.  So if we 
want to extend the definition of exponentiation to include fractional and negative exponents, we 
will try to do so in a way that keeps this property true.  It turns out there is one and only one 
way to do this, for all rational exponents.   
 
For example if we want to define a0 we would want to have a = a1 = a1+0 = a1.a0 = a.a0, so a0 
must be a number which multiplies a into itself.  The only number that does this is 1, so we 
MUST take a0 = 1.   
 
If we want to define a-n where n is a positive integer then we want the rule ana-n = an-n = a0 = 1, 
so we  must define a-n = 1/an, which is possible only if a ≠ 0.  Then to define a1/2 we want 
a1/2a1/2 = a1/2+1/2 = a1 = a, so we must have a1/2 = ± sqrt(a), and thus a must be positive, and 
then it is natural to take a1/2 = + sqrt(a).   
 
Similarly we must take a1/3 = cuberoot(a), and a1/n = nth root(a).  Then for n,m integers and m > 
0, we must take an/m = (mth root(a))n.  Thus the definition of an/m is entirely forced upon us 
when we simply say that a1 = a, and ax+y = axay 
.   
Now when a > 1, the function we have defined on rational numbers n/m is increasing since for all 
m > 0 the mthroot(a) > 1, so also for all n,m, with m > 0, we have an/m > 1 also.  Thus ax is 
increasing, since if n/m > s/t, then (n/m - s/t) = r > 0 where r is rational and positive  so an/m = 
a(s/t +r) = as/t \ ar > as/t.   
 
Now since ax is increasing for rational x, we can define ax for irrational x so as to keep it 
increasing.  I.e. if x is irrational and r is rational and r < x, then we must have ar < ax.  But if r is 
very close to x and r < x then to make ax a continuous function we must ahve ar very close to ax, 
so we define ax = glb {ar for all rational r ≤ x}.   
 
Similarly if  a < 1 we take ax = glb {ar for all rational r ≤ x}.  To check then that ax defined this 
way is continuous, we would have to check that also when a > 1, that ax = glb {ar for all rational 
r ≥ x}, i.e. that if we approximate x from above we get the same value for ax as when we 
approximate x from below.  This is easy to check, using the fact that as k -->∞, a1/k -->1, since 
then if n/m < x < n/m + 1/k, then an/m is very close to a(n/m + 1/k) , hence there is so little room 
between an/m and a(n/m + 1/k) that there is no choice for what ax must be if we are to have an/m 
< ax < a(n/m + 1/k).  This also forces continuity of the function ax.  Then since addition and 
multiplication are continuous too, and since the law ax+y = ax.ay holds for all rational x,y, it 



holds for all real x, y too. 
 
Since the laws a1 = a, ax+y = ax.ay, plus continuity of the function ax, forced the choice of all the 
values of the function, no other function has these properties.  I.e.  we have essentially proved 
the following thorem. 
 
Theorem: If f:R-->R is any continuous function such that f(1) = a > 0, and f(x+y) = f(x)f(y) for 
all real x,y, then f(x) = ax for all real x. 
 
It can also be shown that then (ax)y = axy for all real x,y. 
Next we want to show ax is differentiable and the following partial result is easy to prove. 
Theorem: If a > 0, then ax is differentiable at one point if and only if it is differentiable at all 
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equals k ax.  QED. 
 
It is still not clear that a^x is differentiable, since we need to prove it is differentiable at x=0. 
It is not hard to prove on the other hand, that if f is some differentiable function such that f(x) is 
never zero, and f’(x) = kf(x), for some k ≠ – 0, then f(x) satisfies the property f(x+y) = f(x)f(y) 
for all real x,y, and hence if a = f(1), then f(x) = ax for all real x.  I.e. if we could find a 
diufferentiable function whose derivative behaves the way the derivative if a^x should behave, 
then that function must equal a^x.  I.e. instead of starting with a^x, and proving that it is 
differentiable, it may be easier to work backwards, by finding a function f(x) whose derivative 
f’(x) equals k.f(x), and then conclude that our differentiable fucntion equals a^x. 
 
Still we do not know how to produce such a function, so we look instead at the inverse function, 
the log function with base a.  I.e. we have seen that for a > 1 the function ax is strictly increasing 
and positive valued.  Similarly, if 0 < a < 1, then ax is strictly decreasing but still positive valued.  
In both cases then there is an inverse function, called the logarithm with base a.   
 
We claim that for any given exponential function, the corresponding logarithm must be defined 
for all positive reals.  Equivalently it suffices to show that the exponential function assumes all 
positive values.  I.e. since for a > 1, we have a = 1 + h for some h > 0, it follows that for n > 0, 
we have an = (1+h)n = 1 + nh + .... > 1 + nh.  Thus as n -->∞, also an -->∞.  Thus ax assumes 
arbitrarily large positive values.  Since a-n = 1/an, the function ax also assumes arbitrarily small 
positive values, as x -->∞.  Thus ax is defined at all real numbers and assumes all positive values. 



Hence its inverse function, loga(x), is defined on all positive numbers and assumes all real values. 
 
Then we get the following corollary from the inverse function theorem. 
Theorem:  The function ax is differentiable, with derivative (ax)’ = kax, if and only if the 
function loga(x) is differentiable, with derivative (loga(x))’ = 1/(kx). 
 
I.e. if we can prove the logarithm is differentiable, it will follow that the corresonding exponential 
function is also differentiable. 
 
Now the theorem characterizing exponential functions yields the following equivalent theorem 
characterizing logarithm functions. 
Theorem: If g:R+-->R is a continuous function such that g(xy) = g(x) + g(y), for all x,y, > 0, 
then g takes on all real values, in particular it takes the value 1, and if g(a) = 1, then g(x) = loga(x), 
for all positive x. 
 
Thus if we can find a differentiable function g:R+-->R such that g(xy) = g(x) + g(y) for all x,y > 
0, then g(x) must be loga(x), where g(a) = 1, hence g’(x) = 1/kx, and the inverse function f(x) must 
be differentiable and equal to the exponential function ax.  In particular we would have proved 
that the exponential function is differentiable, since it would be the inverse of a differentiable 
function.   
 
So we are looking for a differentiable function g:R+-->R such that g(xy) = g(x) + g(y).  Actually it 
is sufficient just to find a function with right derivative, for the following reason.   
 
Theorem:  If g:R+-->R is any differentiable function with g(1) = 0, and g’(x) = 1/kx, then we 
also have g(xy) = g(x) + g(y) for all x,y, > 0.  Thus, by the previous theorem, g(x) = loga(x) where 
g(a) = 1. 
Proof:  Let b be any positive number and consider the function h(x) = g(bx).  The derivative h’(x) 
= {1/(kbx)}.b = 1/(kx) = g’(x).  Thus h and g differ by a constant, i.e. h(x) = g(bx) = g(x) + C.  To 
see what C is, just put x = 1.  Then g(b) = g(1) + C, = 0 + C, so C = g(b).  Thus we have proved 
that h(x) = g(bx) = g(x) + g(b), as we wished to show. QED. 
 
Thus to produce a differentiable log function we just need to find a differentiable function g with 
g’(x) = 1/kx.  It turns out we can actually construct a differentiable function having ANY 
continuous function as its derivative.  This is done means of the “area function” construction.  
I.e. consider the graph of the function 1/x for example, i.e. take k = 1. Now define for x > 1, the 
area function A(x) = the area above the x axis, between 1 and x on the x axis,and below the graph 
of y = 1/x.  Then we claim that A(x) is diffrentiable and A’(x) = 1/x.  Moreover we can define for 
0 < x < 1, A(x) = the negative of the area between x and 1, and above the x axis, and below the 
graph of y = 1/x, and then the same is true, and we have A:R+-->R.  We have shown this in class. 
    
It helps to understand what derivatives mean. We know the derivative of a height function is a 
slope function and the derivative of a position function is a velocity function, and the derivative 
of a velocity function is an acceleration function, but what is the derivative of an area function, or 



a volume function?   
 
It turns out the derivative of an area function is a height function, and we can use this to 
construct functions with given continuous derivatives.   In particular since 1/cx is continuous, we 
can construct a function with derivative equal to 1/cx, for any c.  When c = 1, the derivative is 1/x 
and the function is the logarithm of an exponential function with base equal to the value e > 1, 
such that the area under 1/x between 1 and e, equals 1.  This point is at about e ≈ 2.71828.  The 
corresponding exponential function is ex, and the corresponding logarithmic function is loge(x), 
but because we want a shorter name for this log function we call it ln(x) and call it the “natural” 
log function.  Then ex is differentiable with derivative ex.   
 
Finally we can prove 2x is also differentiable as follows.  Since ln(x) = loge(x) takes on all real 
values, it takes the value 2 somewhere, i.e. at the point loge(2) = ln(2).  Hence eln(2) = 2, so 2x = 
(eln(2))x = eln(2)x.  Thus we can differentiate 2x using the chain rule.  I.e. (2x)’ = (eln(2)x)’ = 
(eln(2)x).ln(2) = 2x.ln(2).  So the constant k = ln(2).  
 
Thus for any a > 0, we have (ax)’ = ax.ln(a), and (loga(x))’ = 1/(ln(a).x).  Further, ax = eln(a)x, and 
thus loga(x) = ln(x)/ln(a). 


