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1. Consider the function

f(x, y, z) =
√
y2 − sin(x+ 2z) , and the point P (0, 2, 0) .

(a) 12 marks. Find a unit vector in the direction in which f increases most rapidly at

the point P .

(b) 3 marks. Find a unit vector in the direction in which f decreases most rapidly at

the point P .

(c) 3 marks. Find the rate of change of f at the point P in these directions.

Show the details of your work.

Solution:

(a) f increases most rapidly in the direction of its gradient, so we compute

fx(x, y, z) =
− cos(x+ 2z)

2
√
y2 − sin(x+ 2z)

⇒ fx(0, 2, 0) = −1

4
,

fy(x, y, z) =
2y

2
√
y2 − sin(x+ 2z)

⇒ fy(0, 2, 0) = 1 ,

fz(x, y, z) =
−2 cos(x+ 2z)

2
√
y2 − sin(x+ 2z)

⇒ fx(0, 2, 0) = −1

2
.

Thus, the gradient and its magnitude are equal to

∇f(0, 2, 0) =

(
−1

4
, 1 ,−1

2

)
, ||∇f(0, 2, 0)|| =

√
12 +

(
−1

4

)2

+

(
−1

2

)2

=

√
21

4
.

Therefore, the unit vector in the direction of the gradient is

u =
4√
21

(
−1

4
, 1 ,−1

2

)
.

(b) f decreases most rapidly in the direction opposite to its gradient, so the unit vector

is

v = − 4√
21

(
−1

4
, 1 ,−1

2

)
.

(c) The rate of change of f at P in the direction of u is equal to

||∇f(0, 2, 0)|| =
√

21

4
≈ 1.14564 ,
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and the rate of change of f at P in the direction of v is equal to

−||∇f(0, 2, 0)|| = −
√

21

4
≈ 1.14564 .

2. Consider the surface

z = ln

√
2x2 + y2

3

(a) 12 marks. Find an equation for the tangent plane to the surface at the point

P (2,−1, 0).

(b) 6 marks. Find parametric equations for the normal line to the surface at the point

P (2,−1, 0).

Show the details of your work.

Solution:

(a) We first simplify

z = ln

√
2x2 + y2

3
=

1

2
ln(2x2 + y2)− ln 3 .

Then, we compute the partial derivatives at P (2,−1, 0)

∂

∂x

1

2
ln(2x2 + y2)|x=2,y=−1 =

2x

x2 + y2
|x=2,y=−1 =

4

9
.

∂

∂y

1

2
ln(2x2 + y2)|x=2,y=−1 =

y

x2 + y2
|x=2,y=−1 = −1

9
.

The tangent plane equation is given by

z = 0 +
4

9
(x− 2)− 1

9
(y + 1) =

4

9
x− 1

9
y − 1 .

(b) The normal line to the surface (and the tangent plane) is given by

r = 2i− j + t
(
− 4

9
i +

1

9
j + k

)
.
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3. Consider the portion of the cylinder y2 + z2 = 8 that is above the rectangle

R = {(x, y) : −1 ≤ x ≤ 1 , −2 ≤ y ≤ 2}.

(a) 2 marks. Sketch the projection of the portion onto the xy-plane.

(b) 16 marks. Use double integration to find the area of the portion.

Show the details of your work.

Solution:

a) The projection is shown below

(b) The area is given by the formula

S =

∫∫
R

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dA =

∫ 1

−1

∫ 2

−2

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dy dx ,

where

z =
√

8− y2

Computing the derivatives we get√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

=

√
1 +

y2

8− y2
=

2
√

2√
8− y2

.

Thus, we get

S =

∫ 1

−1

∫ 2

−2

2
√

2√
8− y2

dy dx = 4

∫ 2

0

2
√

2√
8− y2

dy ,

To compute the integral we do the substitution

y = 2
√

2 sin t , dy = 2
√

2 cos t dt ,
√

8− y2 = 2
√

2 cos t , 0 ≤ t ≤ π

4

and get

S = 4

∫ π/4

0

2
√

2 dt = 2
√

2π .
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4. (a) 3 marks. Show that the integral below is independent of the path∫ (1,0)

(−1,4)

(3x− 2y + 4) dx− (2x+ 5y + 3) dy .

(b) 12 marks. Find the potential function φ(x, y)

(c) 3 marks. Use the Fundamental Theorem of Line Integrals to find the value of the

integral.

Show the details of your work.

Solution:

(a) We have

f(x, y) = 3x− 2y + 4 , g(x, y) = −(2x+ 5y + 3) .

Thus

∂yf(x, y) = −2 , ∂xg(x, y) = −2 ,

and therefore the integral is independent of the path.

(b) To compute the integral we find the potential function φ(x, y)

∂φ

∂x
= 3x− 2y + 4 ⇒ φ(x, y) =

3

2
x2 − 2x y + 4x+ C(y) .

To find C(y) we use that

∂φ

∂y
= −2x+

dC(y)

dy
= −(2x+5y+3) ⇒ dC(y)

dy
= −5y−3 ⇒ C(y) = −5

2
y2−3y+C .

Thus, we get

φ(x, y) =
3

2
x2 − 2x y + 4x− 5

2
y2 − 3y + C .

By using the formula, we obtain∫ (1,0)

(−1,4)

(3x− 2y + 4) dx− (2x+ 5y + 3) dy =

∫ (1,0)

(−1,4)

∂φ

∂x
dx+

∂φ

∂y
dy = φ(x, y)|(1,0)

(−1,4)

=
3

2
+ 4− (

3

2
+ 8− 4− 40− 12) = 52 .



Page 6 of 11 XMA2E011

5. (a) 5 marks. Express rectangular coordinates in terms of spherical coordinates

(b) Use triple integral and spherical coordinates to

i. 6 marks. Compute the volume of a ball of radius R.

ii. 7 marks. Find the mass of the solid enclosed between the spheres

x2 + y2 + z2 = 4 and x2 + y2 + z2 = 9 if the density is

δ(x, y, z) =
e−(x2+y2+z2)√
x2 + y2 + z2

.

Show the details of your work.

Solution :

(a) We have

x = r cos θ sinφ , y = r sin θ sinφ , z = r cosφ

(b) i. We use the spherical coordinates to get

V =

∫∫∫
V

dV =

∫ 2π

0

(∫ π

0

[∫ R

0

r2dr

]
sinφ dφ

)
dθ =

4

3
πR3 .

(b) ii. We use the spherical coordinates to get

M =

∫∫∫
V

δ(x, y, z)dV =

∫ 2π

0

(∫ π

0

[∫ 3

2

e−r
2

r
r2dr

]
sinφ dφ

)
dθ

= 4π

∫ 3

2

e−r
2

rdr = 2π(e−4 − e−9) ≈ 0.114305 . (1)

6. (a) 14 marks. Solve the following initial value problem by the Laplace transform

y′′ + 4 y = 4u(t− π)− 4 δ(t− 3π) , y(0) = 1 , y′(0) = 0 .

(b) 4 marks. Sketch the input function and the solution.

Show the details of your work.

Solution :

(a) We denote Y (s) = L(y), and then using the formulae

L(y′′) = s2Y (s)− sy(0)− y′(0) , L(u(t− a)) =
e−as

s
, L(δ(t− a)) = e−as ,



Page 7 of 11 XMA2E011

we get the algebraic equation

(s2 + 4)Y (s) = 4
e−πs

s
− 4e−3πs + s .

Solving the equation for Y , we get

Y (s) =
4e−πs

s(s2 + 4)
− 4e−3πs

s2 + 4
+

s

s2 + 4
.

Then we represent
4

s(s2 + 4)
=

1

s
− s

s2 + 4
.

Finally we use the formulas of the inverse Laplace transform

L−1

(
1

s

)
= 1 , L−1

(
s

s2 + 4

)
= cos 2t , L−1

(
e−asF (s)

)
= f(t− a)u(t− a) ,

to get

y(t) = u(t− π)− cos 2(t− π)u(t− π)− 2 sin 2(t− 3π)u(t− 3π) + cos 2t

=


cos 2t if 0 < t < π

1 if π < t < 3π

1− 2 sin 2t if t > 3π

. (2)

(b) The plot of the input function and the solution is shown below.

5 10 15

-6

-4

-2

2

4
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Useful Formulae

1. Let r(t) be a vector function with values in R3: r(t) = f(t) i + g(t) j + h(t)k .

(a) Its derivative is dr
dt

=
(
df
dt
, dg
dt
, dh
dt

)
.

(b) The magnitude of this vector is ||dr
dt
|| =

√(
df
dt

)2
+
(
dg
dt

)2
+
(
dh
dt

)2
.

(c) The unit tangent vector is T =
dr
dt

|| dr
dt
|| .

(d) The vector equation of the line tangent to the graph of r(t) at the point P =

(x0, y0, z0) corresponding to t = t0 on the curve is R(t) = r0 + (t− t0)v0 , where

r0 = r(t0) and v0 = dr
dt

(t0) .

(e) The arc length of the graph of r(t) between t1 and t2 is L =
∫ 2

1
||dr
dt
|| dt .

(f) The arc length parameter s having r(t0) as its reference point is s =
∫ t
t0
|| dr
du
|| du .

2. Let σ be a surface in R3: z = f(x, y)

(a) The slope kx of the surface in the x-direction at the point (x0, y0) is kx =

∂z
∂x

(x0, y0) .

(b) The slope ky of the surface in the y-direction at the point (x0, y0) is ky =

∂z
∂y

(x0, y0) .

(c) The equation for the tangent plane to the surface at the point P = (x0, y0, z0) is

z = z0 + kx(x− x0) + ky(y − y0) .

(d) Parametric equations for the normal line to the surface at P = (x0, y0, z0) are

r(t) = r0 + t(−kxi− kyj + k) , r0 = x0i + y0j + z0k .

(e) The volume under the surface and over a region R in the xy-plane is

V =
∫∫

R
f(x, y) dA .

(f) The area of the portion of the surface that is above a region R in the xy-plane is

S =
∫∫

σ
dS =

∫∫
R

√
1 +

(
∂z
∂x

)2
+
(
∂z
∂y

)2

dA .

(g) The mass of the lamina with the density δ(x, y, z) that is the portion of the surface

that is above a region R in the xy-plane is

M =
∫∫

σ
δ(x, y, z) dS =

∫∫
R
δ(x, y, z)

√
1 +

(
∂z
∂x

)2
+
(
∂z
∂y

)2

dA .
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3. The local linear approximation of the function z = f(x, y) at the point (x0, y0) is

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) .

4. Let f(x, y, z) be a function of three variables

(a) The gradient of f is ∇f = (fx, fy, fz) .

(b) f increases most rapidly in the direction of its gradient, and the rate of change of

f in this direction is equal to ||∇f ||.

(c) If f is smooth then its critical points satisfy fx = fy = fz = 0.

5. Let R be a region in the xy-plane bounded by the curves y = g(x) , y = h(x) , x =

a , x = b, and g ≤ h for a ≤ x ≤ b. Then the double integral over the region is∫∫
R
f(x, y) dA =

∫ b
a

[∫ h(x)
g(x)

f(x, y)dy
]
dx .

6. Let R be a region in the xy-plane bounded by the curves (in polar coordinates)

r = r1(θ) , r = r2(θ) , θ = α , θ = β and r1 ≤ r2 for α ≤ θ ≤ β. Then the double

integral over the region is∫∫
R
f(r, θ) dA =

∫∫
R
f(r, θ) rdr dθ =

∫ β
α

[∫ r2(θ)

r1(θ)
f(r, θ)rdr

]
dθ .

7. Let R be a plain lamina with density δ(x, y).

(a) Its mass is equal to M =
∫∫

R
δ(x, y) dA .

(b) The x-coordinate of its centre of gravity is equal to xcg = 1
M

∫∫
R
x δ(x, y) dA .

(c) The y-coordinate of its centre of gravity is equal to ycg = 1
M

∫∫
R
y δ(x, y) dA .

8. Let G be a simple solid whose projection onto the xy-plane is a region R. G is bounded

by a surface z = g(x, y) from below and by a surface z = h(x, y) from above.

(a) The triple integral over the solid is
∫∫∫

G
f(x, y, z) dV =

∫∫
R

[∫ h(x,y)
g(x,y)

f(x, y, z) dz
]
dA .

(b) The volume of the solid is V =
∫∫∫

G
dV =

∫∫
R

[h(x, y)− g(x, y)] dA .

9. Let G be a solid enclosed between the two surfaces (in spherical coordinates)

r = g(θ , φ) , r = h(θ , φ).
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(a) The triple integral over the solid is∫∫∫
G
f(r, θ, φ) dV =

∫ 2π

0

(∫ π
0

[∫ h(θ ,φ)

g(θ ,φ)
f(r, θ, φ) r2dr

]
sinφ dφ

)
dθ .

(b) The volume of the solid is V =
∫∫∫

G
dV =

∫ 2π

0

(∫ π
0

[∫ h(θ ,φ)

g(θ ,φ)
r2dr

]
sinφ dφ

)
dθ .

(c) The mass of the solid with the density δ(r, θ, φ) is M =
∫∫∫

G
δ(r, θ, φ) dV .

10. Let a region Rxy in the xy-plane be mapped to a region Ruv in the uv-plane under the

change of variables u = u(x, y) , v = v(x, y).

(a) The magnitude of the Jacobian of the change is
∣∣∣∂(u,v)
∂(x,y)

∣∣∣ =
∣∣∣∂u∂x ∂v∂y − ∂u

∂y
∂v
∂x

∣∣∣ .
(b) The integral over Rxy is

∫∫
Rxy

f(x, y) dAxy =
∫∫

Ruv
f (x(u, v), y(u, v))

∣∣∣∂(u,v)
∂(x,y)

∣∣∣−1

dAuv .

11. The area of the surface that extends upward from the curve x = x(t) , y = y(t) , a ≤

t ≤ b in the xy-plane to the surface z = f(x, y) is given by the following line integral

A =
∫
C
z ds =

∫ b
a
f(x(t), y(t))

√(
dx
dt

)2
+
(
dy
dt

)2
dt .

12. Consider a line integral
∫
C
f(x, y) dx + g(x, y) dy , and let P = (xP , yP ) and Q =

(xQ, yQ) be the endpoints of the curve C.

(a) The line integral is independent of the path if ∂yf(x, y) = ∂xg(x, y) .

(b) Then there is a potential function φ(x, y) satisfying ∂φ
∂x

= f(x, y) , ∂φ
∂y

= g(x, y) ,

(c) and the Fundamental Theorem of Line Integrals says that∫
C
f(x, y) dx + g(x, y) dy =

∫ Q
P

∂φ
∂x
dx + ∂φ

∂y
dy = φ(x, y)|QP = φ(xQ, yQ) −

φ(xP , yP ) .

13. Let a closed curve C be oriented counterclockwise, and be the boundary of a simply

connected region R in the xy-plane. By Green’s Theorem we have∮
C
f(x, y) dx+ g(x, y) dy =

∫∫
R

(
∂g(x,y)
∂x
− ∂f(x,y)

∂y

)
dA

14. Let F(x, y, z) = M i +N j + P k be a vector field.

(a) If σ is the surface z = f(x, y), oriented by upward unit normals n, and R is the

projection of σ onto the xy-plane then

flux =
∫∫

σ
F · n dS =

∫∫
R

(
−M ∂f

∂x
−N ∂f

∂y
+ P

)
dA .
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(b) If σ is the surface z = f(x, y), oriented by downward unit normals n, and R is the

projection of σ onto the xy-plane then

flux =
∫∫

σ
F · n dS =

∫∫
R

(
M ∂f

∂x
+N ∂f

∂y
− P

)
dA .

(c) According to the Divergence Theorem the flux of F across a closed surface σ with

outward orientation is

flux =
∫∫

σ
F · n dS =

∫∫∫
V

div F dV , div F = ∂M
∂x

+ ∂N
∂y

+ ∂P
∂z
.

(d) If σ is an oriented smooth surface that is bounded by a simple, closed, smooth

boundary curve C with positive orientation then, according to Stokes’ Theorem∮
C

F·dr =
∫∫

σ
(curl F)·n dS , curl F =

(
∂P
∂y
− ∂N

∂z

)
i+
(
∂M
∂z
− ∂P

∂x

)
j+
(
∂N
∂x
− ∂M

∂y

)
k .

15. The Laplace transform of a function f(t) is the function F (s) defined by

F (s) = L(f(t)) =
∫∞

0
e−stf(t)dt , f(t) = L−1(F (s)) .

Function Transform Function Transform

eat 1
s−a eattn n!

(s−a)n+1

eat sinωt ω
(s−a)2+ω2 eat cosωt s−a

(s−a)2+ω2

eat sinhωt ω
(s−a)2−ω2 eat coshωt s−a

(s−a)2−ω2

t sinωt 2ωs
(s2+ω2)2

t cosωt s2−ω2

(s2+ω2)2

u(t− a) e−as

s
δ(t− a) e−as

16. Let F (s) = L(f(t)), then L(f(t− a)u(t− a)) = e−asF (s);

L (eatf(t)) = F (s− a) ; L (tf(t)) = −dF (s)
ds

; L (f(kt)) = 1
k
F
(
s
k

)
.

17. Let Y (s) = L(y), then L(y′) = sY (s)− y(0) , L(y′′) = s2Y (s)− sy(0)− y′(0) .

18. Convolution. Let f(t) ∗ g(t) =
∫ t

0
f(τ)g(t− τ) dτ . Then L(f(t) ∗ g(t)) = F (s)G(s)
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