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Chapter 7 The Classical Mechanics of the Special Theory of Relativity

rect relativisue theory must provide valid expressions for these four forces. These
expressions, if stated in covariant form, will automatically provide the transfor-
mation properties of the forces. In this approach. since we understand electro-
magnetic forces, it remains to find expressions for the other three fundamental
forces in a covariant form in some frame and assume this is correct in all inertial
frames. It is assumed the transformaticns involve no terms that vanish in the cho-
sen frame; for example, there is no need to arbitrarily add terms proportional to
(v/cy. This program has been carried out for two of the remaining three forces
{weak nuclear and strong nuclear) and for weak gravitational forces. It fails com-
pletely for strong gravitational effects. Tt is beyond the scope of the present text
to probe more deeply in to this question.

The second approach of determining the correct relativistic force is to simply
define force as being the time rate of change of the momentum. Then we write

i _p (7.76)
dt

where the p; in Eq. (7.76) is some relativistic generalization of the Newtonian
momenturn that reduces to mu; in the limit of small 8. The simplest generalization
is the one given in Eq. (7.36). This second approach has thus far failed to produce
any results other than those predicted by the first approach.

RELATIVISTIC KINEMATICS OF COLLISIONS
AND MANY-PARTICLE SYSTEMS

The tformulations of the previous sections enable us to generalize relativistically
the discussion of Section 3.11 on the transformation of collision phenomena be
tween various systems. The subject is of considerable interest in experimental
high-energy physics. While the forces between elementary particles are only im-
perfectly known, and are certainly far from classical, so long as the particles in-
volved 1n a reaction are outside the region of mutual interaction their mean motion
can be described by classical mechanics. Further, the main principle involved i
the transformations—conservation of the four-vector of momentum—is valid in
both classical and quantum mechanies. The actual collision or reaction is taken as
occurring at a point—or inside a very small black box—and we look only at the
behavior of the particles before and after.

Because of the importance to high-energy physics, this aspect of relativistic
Kinemarics has become an elaborately developed field. It is impossible 1o give a
comprehensive discussion here. All that we can do is provide some of the im
portant tools, and cite a few simple examples that may illustrate the flavor of
the techmques employed. Although many collision expertments involve colliding
beams, we shall. tor simplicity. confine our attentions to problems where one of
the particles is at rest in the laboratory frame. The generalization to both particles
moving in the laboratory frame is straightforward.
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The notion of a point designated as the center of mass obviously presents dif-
ficulties in 2 Lorentz-invariant theory. But the center-of-mass system can be suit-
ably generalized as the Lorentz frame of reference in which the total spatial linear
momentum of all particles is zero. That such a Lorentz frame can always be found
follows from the theorem that the total momentum 4-vector is timelike for a sys-
tem of mass points.

One such frame is the cenier-of momentum frame. This is a frame in which
the components of the spatial momentuwm of the initial particles add to zero. Such
a frame obviously exists. Let us define £ and p in Eq. (7.36) to be
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where the sum is over the particles involved. The left-hand side of Eq. (7.38)
becomes
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This clearly is positive (hint: separate the negative terms in which » = s). so
it is possible to find a frame in which the three-momentum, p, equals zero. The
Lorentz system, in which the spatial components of the total momentum are zero,
is termed the center-of-momentum system. or more loosely, and somewhat incor-
rectly, as the center-of-mass system. and will be designated by the abbreviation
“C-O-M system.”

As an example, let us consider a particle of mass 71 and momentum p! in the
x-direction, which suffers a head-on collision with a particle of mass m5 at rest in
an experimenter’s frame (called the laboratory frame). The mitial 4-momentum is

p"‘ = ([}?11}’ + mzle, m1yv' ,0.0). (7.79)

The length squared of momentum has the magnitude
i — (2 2 , 2 Y
PYpu = (my +m5 + 2myymaz)ce. (7.79)
When components are given, we shall follow the practice of denoting the primed
frane by primes on the indices. The two particles are denoted by subscripts 1

and 2 respectively.
In the C-O-M system, the total momentum is

([m1y{ +m2y31c. 0.0,0), (7.80)

since by definition the space part of the momentum vanishes,

my;Bic +maysBhc — 0, (7.81)



