
4150fa09. Quadratic fractional transformations (rational functions of degree two) 
Theorem: Let f,g be polynomials with complex coefficients, such that max(deg(f), 
deg(g)) = 2, and f,g have no common roots.  Then: 
i) (f/g) defines a surjective holomorphic map from the Gauss sphere to itself ; 
ii) exactly two points have only one preimage each, all the rest have two preimages; 
iii) points with only one preimage are, in some sense, the zeroes of the derivative of f/g. 
proof:  (surjectivity)  If g has any roots, then these roots go to infinity, and if g has no 
roots, then g is constant and f has degree 2, so infinity goes to infinity.  In any case 
infinity is in the image of f/g.  If f has any roots then these roots go to 0, and if f has no 
roots then infinity goes to 0, so 0 is also in the image of f/g.  If w is any non zero complex 
constant, to find preimages of w, we set f(z)/g(z) = w, and try to solve for z.  multiplying 
out gives f(z) = wg(z), or f(z)-wg(z)=0.  If g has degree less than 2, then f has degree 2 
and also f-wg has degree 2, so this polynomial has solutions by the quadratic formula.  If 
f has degree less than 2 then g has degree 2, and since w ≠ 0, this polynomial again has 
degree 2 and hence always has solutions.  If both f, g have degree 2, with lead 
coefficients a, b, then as long as w ≠ a/b, the polynomial f-wg still has degree 2 and hence 
has solutions.  If w = a/b, then infinity maps to w = a/b, and so we still have a preimage 
for w = a/b.  Thus in all cases there are preimages of every point, so f/g is surjective. 
 
(number of preimages).  Since the preimages of w are the solutions of a quadratic 
equation, there are at most two in all cases.  (That quadratic equation can never become 
the identically zero equation, since f and g have no common roots, so f can never equal 
wg.  In one case, where degree(g) is less than 2, then infinity has as preimages both 
infinity and the roots of g, but then g has at most one root, so again there are at most two 
preimages.) 
When are there two preimages and when is there only one?   
Lemma: If we compose a QFT with a LFT, either before or after, or both, the result is 
again a QFT. 
proof: Let the QFT be [az^2+bz+c]/[dz^2+ez+f], where either a or d is not zero, and 
substitute the LFT [gz+h]/[nz+m], in place of z in the QFT.  Doing this cannot render 
either top or bottom identically zero, since that would imply one of the quadratic 
polynomials is zero at infinitely many points, hence was zero moriginally.  After 
simplifying, we get then a fraction of form 
[(ag^2 + bgn + cn^2)z^2 +....]/[(dg^2 + egn + fn^2)z^2+....], where neither top nor 
bottom is identically zero.  We claim one of them has non zero coefficient of z^2.  If n=0, 
then g≠0, so either ag^2 or dg^2 is non zero.  If n≠0, and both coefficients of z^2  = 0, 
then a(g/n)^2 + b(g/n) + c) = 0 = (d(g/n)^2 + e(g/n) + f), and g/n is a common root of 
both original quadratics, contrary to hypothesis.  Thus preceding a QFT by a LFT does 
give a QFT. 
Now we compose afterwards, i.e. we substitute the QFT in place of z in the LFT 
[gz+h]/[nz+m], and simplify, getting:  
[g(az^2+bz+c) + h(dz^2+ez+f)]/[n(az^2+bz+c) + m(dz^2+ez+f)].  If either top or bottom 
were identically zero, then the original quadratics would be proportional hence have two 
common zeroes, contrary to hypothesis.  If both coefficients of z^2 were zero, in top and 
bottom, then the non zero vector (a,d) is in the kernel of the matrix of coefficients of the 
LFT, which contradicts the assumption that matrix has non zero determinant.  QED. 



Now since we know infinity always has a preimage, by composing with a LFT if 
necessary sending infinity to one of those preimages, we change our QFT into one with 
infinity going to infinity, hence with (new) g of degree less than 2.  Hence we have either 
[aZ^2 + bZ + c]/[Z+e], or [aZ^2 + bZ + c].  In the first case, the fraction equals w if and 
only if z is a solution of the quadratic equation aZ^2 + bZ + c = w(Z+e), or aZ^2 + (b-
w)Z + c-e = 0.  This last equation always has at least one solution since a ≠ 0, and it has 
only one solution if and only if its discriminant (b-w)^2 – 4a(c-e) = 0.  This discriminant 
is itself a quadratic equation in w with lead coefficient 1, hence has at least one solution.  
Thus there is at least one finite point w in C that has only one preimage.  By using 
suitable LFT’s we can make this point into infinity.  Now that we have infinity going to 
infinity and nothing else, our QFT looks like the second case [aZ^2 + bZ + c].  Then the 
finite complex number w has only one preimage precisely when aZ^2 + bZ + c = w has 
only one solution, i.e. when the discriminant b^2 – 4a(c-w) = 0.  This equation is linear in 
w with coefficient of w equal to 4a ≠ 0, hence it has precisely one solution for w. In fact 
the equation is b^2 = 4a(c-w) = 4ac -4aw, so the unique solution is w = [4ac-b^2]/4a = c 
– b^2/4a.  Thus, in addition to infinity, there is exactly one finite point which has only 
one preimage under the QFT [aZ^2 + bZ + c].  Since this form was obtained by 
composing our original QFT with LFT’s, and those LFT’s are bijections of the sphere, it 
follows that also the original QFT had the same behavior.  I.e. every QFT is a surjection 
from the Gauss sphere to itself, and exactly two points of the sphere have one preimage 
while all other points have two preimages. 
 
Let us check also at least in one case, that points with only one preimage are those points 
where the derivative of the QFT is zero.  I.e. assume we have the QFT f = aZ^2 + bZ + c, 
as above.  Then the derivative is 2aZ+b which vanishes when Z = -b/2a.  If we plug this 
into f, we get a(-b/2a)^2 + b(-b/2a) + c = b^2/4a –b^2/2a + c = c – b^2/4a, exactly the w 
found above to have only one preimage.  As for infinity, since we have both input and 
output equal to infinity, we need to calculate the derivative in the corrdinate w = 1/z, at w 
= 0.  To change to the w coordinate for the input variable, we replace  f(z) by f(1/w) = 
a(1/w)^2 + b(1/w) + c = [a + bw + cw^2]/w^2, and to change to the w variable in the out 
put variabl;e we take the reciprocal of this getting w^2/[a + bw + cw^2].  Now we take 
the derivative with respect to the variable w, and since a ≠0, we do get zero when w = 0.  
[It does NOT work to use the original polynomial in z, and set z = infinity in that 
derivative.] 
 
A lot of this explicit algebra could be avoided if we knew some topology, since a 2:1 
branched cover of the sphere in which every point has 2 preimages would pull back a 
triangulation of the sphere, i.e. a decomposition into triangles, into a triangulation with 
twice as many faces, vertices and edges.  But then Euler’s formula would fail, since we 
must always have V-E+F = 2, and doubling the number of vertcies edges and faces would 
make it 4.  Also, if we make sure each point with only one preimage is a vertex of our 
triangulation, then the number of missing vertices in the pull back would equal the 
number of points with one preimage.  Since we need V-E+F = 2, not 4, there are two such 
points.  I.e. if the original triangles have V vertices, E edges, and F faces, then the 
pullback triangles must have 2V-2 vertices, 2E edges and 2F faces. 


