
The Poynting vector is, 
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Consider two charged particles, one at the origin (charge q1 and mass m1) and the other (charge q2 and mass m2) 

passing by with a large speed v, large enough that the trajectory is a straight line. The distance of closest approach is a. 

Find the Poynting vector in the center of mass frame, with use of [I.1]. 

 

Lab frame: we have location of each charge as a function of time, 
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Transform to centre of momentum. The center of momentum coordinate is moving at a velocity, 
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Semiclassical approximation: can Galilean (instead of Lorentz) transform the coordinates to CM-frame, 
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Putting the transformations [I.6] and [I.7] into [I.2] and [I.3], 
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Looking at [I.8] and [I.9], it seems that we still have “constant velocity” motion, and there’s no way the dipole moment is 

accelerating, 
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Putting [I.10] into [I.1], we instantly get, 
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There’s no need to even transform to the CM-frame; this [I.11] is true in all inertial (nonaccelerating) frames. Even if 
there is a field on the point charges exerting a force on them, it specifically says in the problem statement that the 

trajectory is a straight line, along which the particle flies with constant velocity. 


