The Poynting vector is,

S= Ho &f [L1]

Consider two charged particles, one at the origin (charge ql and mass ml) and the other (charge q2 and mass m2)
passing by with a large speed v, large enough that the trajectory is a straight line. The distance of closest approach is a.
Find the Poynting vector in the center of mass frame, with use of [1.1].

Lab frame: we have location of each charge as a function of time,
r=0 [1.2]

r, =viX +a§y [L.3]

Transform to centre of momentum. The center of momentum coordinate is moving at a velocity,
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Semiclassical approximation: can Galilean (instead of Lorentz) transform the coordinates to CM-frame,
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YV—=y=y-vg t=y-0=y [1.7]
Putting the transformations [1.6] and [1.7] into [I1.2] and [1.3],
K =0—v,,t=—— (L8]
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Looking at [I.8] and [I.9], it seems that we still have “constant velocity” motion, and there’s no way the dipole moment is

accelerating,
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Putting [I.10] into [I.1], we instantly get,
S=0 [T.11]
There’s no need to even transform to the CM-frame; this [I.11] is true in all inertial (nonaccelerating) frames. Even if

there is a field on the point charges exerting a force on them, it specifically says in the problem statement that the
trajectory is a straight line, along which the particle flies with constant velocity.



