
CHAPTER 5 Principles of Convection

of Pr2/ 3 for the flat-plate problem and, as it turns out, this dependence works fairly well for
rurbulent tube flow. Equations (5-114) and (5-116) may be modified by this factor to yield

St Pr2/ 3 = £ [5-114a]
8
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[5-116a]

As we shall see in Chapter 6, Equation (5-116a) predicts heat-transfer coefficients that
are somewhat higher than those observed in experiments. The purpose of the discussion at
this point has been to show that one may arrive at a relation for turbulent heat transfer in a
fairly simple analytical fashion. As we have indicated earlier, a rigorous development of the
Reynolds analogy between heat transfer and fluid friction involves considerations beyond
the scope of our discussion, and the simple path of reasoning chosen here is offered for the
purpose of indicating the general nature of the physical processes.

For calculation purposes, a more correct relation to use for turbulent flow in a smooth
mbe is Equation (6-4a), which we list here for comparison:

NUd = 0.023 PrOA

All properties in Equation (6-4a) are evaluated at the bulk temperature.

5-12 I HEAT TRANSFER IN HIGH-SPEED FLOW

[6-4a]

[5·117]

Our previous analysis of heat transfer (Section 5-6) neglected the effects
of viscous dissipation within the boundary layer. When the free-stream velocity is very
high, as in high-speed aircraft, these dissipation effects must be considered. We begin our
analysis by considering the adiabatic case, i.e., a perfectly insulated wall. In this case the wall
temperature may be considerably higher than the free-stream temperature even though no
heat transfer takes place. This high temperature results from two situations: (1) the increase
in temperature of the fluid as it is brought to rest at the plate surface while the kinetic energy
of the flow is converted to internal thermal energy, and (2) the heating effect due to viscous
dissipation. Consider the first situation. The kinetic energy of the gas is converted to thermal
energy as the gas is brought to rest, and this process is described by the steady-flow energy
equation for an adiabatic process:

..1 2to = too +-uoo2gc

where io is the stagnation enthalpy of the gas. This equation may be written in terms of
temperature as

1 2cp(To - Too) = -uoo2gc

where To is the stagnation temperature and Too is the static free-stream temperature.
Expressed in terms of the free-stream Mach number, it is

Tlo y-l- = 1+__M 2 [5-118]
Too 2 00

where Moo is the Mach number, defined as Moo = uoo/a, and a is the acoustic velocity,
which for an ideal gas may be calculated with

a = JygcRT [5-119]

where R is the gas constant for the particular gas.
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Notice that the difference between the adiabatic wall temperature and the actual wall tem-
perature is used in the definition so that the expression will yield a value of zero heat flow
when the wall is at the adiabatic wall temperature. For gases with Prandtl numbers near
unity, the following relations for the recovery factor have been derived:

Laminar flow: r = Pr l / 2 [5-122]

[5-120]

[5-124]

[5-121]

[5-123]

[5-125]

r =Prl / 3

T* = Too + 0.50(Tw - Too) +0.22(Taw - Too)

In the actual case of a boundary-layer flow problem, the fluid is not brought to rest
reversibly because the viscous action is basically an irreversible process in a thermodynamic
sense. In addition, not all the free-stream kinetic energy is converted to thermal energy-
part is lost as heat, and part is dissipated in the form of viscous work. To take into account
the irreversibilities in the boundary-layer flow system, a recovery factor is defined by

Taw - Toor=----
To - Too

Turbulent flow:

where Taw is the actual adiabatic wall temperature and Too is the static temperature of
the free stream. The recovery factor may be determined experimentally, or, for some flow
systems, analytical calculations may be made.

The boundary-layer energy equation

aT aT a2T f1- (au)2
u ax + v ay = a ay2 + pCp ay

has been solved for the high-speed-flow situation, taking into account the viscous-heating
term. Although the complete solution is somewhat tedious, the final results are remarkably
simple. For our purposes we present only the results and indicate how they may be applied.
The reader is referred to Appendix B for an exact solution to Equation (5-22). An excellent
synopsis of the high-speed heat-transfer problem is given in a report by Eckert [4]. Some
typical boundary-layer temperature profiles for an adiabatic wall in high-speed flow are
given in Figure B-3.

The essential result of the high-speed heat-transfer analysis is that heat-transfer rates
may generally be calculated with the same relations used for low-speed incompressible
flow when the average heat-transfer coefficient is redefined with the relation

The analogy between heat transfer and fluid friction [Equation (5-56)] may also be used
when the friction coefficient is known. Summarizing the relations used for high-speed heat-
transfer calculations:

Laminar boundary layer (Rex < 5 x 105):

St; Pr*2/3 = 0.332 Re;-1/2

These recovery factors may be used in conjunction with Equation (5-120) to obtain the
adiabatic wall temperature.

In high-velocity boundary layers substantial temperature gradients may occur, and
there will be correspondingly large property variations across the boundary layer. The
constant-property heat-transfer equations may still be used if the properties are introduced
at a reference temperature T* as recommended by Eckert:
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Turbulent boundary layer (5 x 105 < Rex < 107) :

St* Pr*2/3 = 0 0296 Re*-1/5x . x

Turbulent boundary layer (107 < Rex < 109):

St: Pr*2/3 = 0.185 (log Re:) -2.584

[5-126]

[5-127]

The superscript * in the above equations indicates that the properties are evaluated at the
ference temperature given by Equation (5-124).
To obtain an average heat-transfer coefficient, the above expressions must be inte-

_ ated over the length of the plate. If the Reynolds number falls in a range such that
Equation (5-127) must be used, the integration cannot be expressed in closed form, and a
numerical integration must be performed. Care must be taken in performing the integration
for the high-speed heat-transfer problem since the reference temperature is different for the
laminar and turbulent portions of the boundary layer. This results from the different value
of the recovery factor used for laminar and turbulent flow as given by Equations (5-122)
and (5-123).

When very high flow velocities are encountered, the adiabatic wall temperature may
come so high that dissociation of the gas will take place and there will be a very wide
'ariation of the properties in the boundary layer. Eckert [4] recommends that these prob-
ems be treated on the basis of a heat-transfer coefficient defined in terms of enthalpy
difference:

The enthalpy recovery factor is then defined as

iaw - ioo
ri=. .

10 -100

[5-128]

[5-129]

'here iaw is the enthalpy at the adiabatic wall conditions. The same relations as before
are used to calculate the recovery factor and heat-transfer except that all properties are
evaluated at a reference enthalpy i* given by

i* = ioo + 0.5(iw - ioo ) + 0.22(iaw - i oo )

The Stanton number is redefined as

[5-130]

[5-131]

This Stanton number is then used in Equation (5-125), (5-126), or (5-127) to calculate the
heat-transfer coefficient. When calculating the enthalpies for use in the above relations,
the total enthalpy must be used; that is chemical energy of dissociation as well as internal
thermal energy must be included. The reference-enthalpy method has proved successful for
alculating high-speed heat-transfer with an accuracy of better than 10 percent.

High-Speed Heat Transfer for a Flat Plate _
A flat plate 70 cm long and 1.0 m wide is placed in a wind tunnel where the flow conditions
are M =3, p = -io atm, and T =-40°C. How much cooling must be used to maintain the plate
temperature at 35°C?
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• Solution
We must consider the laminar and turbulent portions of the boundary layer separately because the
recovery factors, and hence the adiabatic wall temperatures, used to establish the heat flow will
be different for each flow regime. It turns out that the difference is rather small in this problem,
but we shall follow a procedure that would be used if the difference were appreciable, so that the
general method of solution may be indicated. The free-stream acoustic velocity is calculated from

a = )ygcRT00 = [(1.4)(1.0)(287)(233)] 1/2 = 306 m/s [1003 ft/s]

so that the free-stream velocity is

Uoo = (3)(306) =918 m/s [3012 fils]

The maximum Reynolds number is estimated by making a computation based on properties eval-
uated at free-stream conditions:

(1.0132 x 105)(to) 3 3 3
P = = 0.0758 kg/m [4.73 x 10- Ibm/fi]
00 (287) (233)

Moo = 1.434 x 10-5 kg/m· s [0.0347 Ibm/h· ft]
(0.0758)(918)(0.70) 6

ReL 00 = 5 = 3.395 x 10, 1.434 x 10-

Thus we conclude that both laminar and turbulent-boundary-layer heat transfer must be considered.
We first determine the reference temperatures for the two regimes and then evaluate properties at
these temperatures.

Laminar portion

TO = Too (1 + Y 1 ) = (233)[1 + (0.2)(3)2] = 652 K

Assuming a Prandtl number of about 0.7, we have

r=Pr l / 2 = (0.7)1/2 =0.837
Taw - Too Taw - 233

r= To - Too 652 - 233

and Taw = 584 K = 311°c [592°P]. Then the reference temperature from Equation (5-123) is

T* = 233+ (0.5)(308 - 233) + (0.22)(584 - 233) = 347.8 K
Checking the PrandtJ number at this temperature, we have

Pr* =0.697

so that the calculation is valid. If there were an appreciable difference between the value of Pr*
and the value used to determine the recovery factor, the calculation would have to be repeated
until agreement was reached.

The other properties to be used in the laminar heat-transfer analysis are

(1.0132 x 105)(1/20) 3
P* = =0.0508 kg/m(287)(347.8)

M* = 2.07 x 10-5 kg/m· s

k* = 0.03 W/m· °c [0.0173 Btu/h· fi· OF]
cp *= 1.009 kJ/kg . °c
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Turbulent portion

Assuming Pr = 0.7 gives

r = Pr1/3 = 0.888 = Taw - Too = Taw - 233
TO - Too 652 - 233

Taw = 605 K = 332°C
T* = 233 + (0.5)(308 - 233) + (0.22)(605 - 233) = 352.3 K
Pr*=0.695

The agreement between Pr* and the assumed value is sufficiently close. The other properties to
be used in the turbulent heat-transfer analysis are

* (1.0132 x 105)(1/20) 0050 3
P = =.lkg/m(287) (352.3)
fL* = 2.09 x 10-5 kg/m . s
k* =0.0302 W/m· °c cp* = 1.009 kJ/kg· °c

Laminar heat transfer

We assume

R * - 5 105 _ p*uooxce 't- x -cn fL*

(5 x 105)(2.07 x 10-5)
Xc = (0.0508)(918) =0.222 m

Nu* = = 0.664 (Re* . ) 1/2 Pr*1/3
k* ent

= (0.664)(5 x 105)1/2(0.697)1/3 = 416.3

h = (416.3)(0.03) = 56.25 W/m2 .oc [9.91 Btu/h. ft2 . OF]
0.222

This is the average heat-transfer coefficient for the laminar portion of the boundary layer, and the
heat transfer is calculated from

q=hA(Tw - Taw)
= (56.26)(0.222)(308 - 584)
=-3445W [-11,750 Btu/h]

so that 3445 W of cooling is required in the laminar region of the plate per meter of depth in the
z direction.

Thrbulent heat transfer

To determine the turbulent heat transfer we must obtain an expression for the local heat-transfer
coefficient from

St; Pr*2/3 = 0.0296 Re;-1/5

and then integrate from X = 0.222 m to x = 0.7 m to determine the total heat transfer:

(
p*u X)-1/5

hx =Pr*-2f3 p*uoocp(0.0296) fL':

Inserting the numerical values for the properties gives

hx =94.34x- I/5

263



264 Review Questions

The average heat-transfer coefficient in the turbulent region is determined from

Using this value we may calculate the heat transfer in the turbulent region of the flat plate:

q=hA(Tw - Taw)
= (111.46)(0.7 - 0.222)(308 - 605)
= -15,823 W [-54,006 Btu/h]

The total amount of cooling required is the sum of the heat transfers for the laminar and turbulent
portions:

Total cooling =3445 + 15,823 =19,268 W [65,761 Btu/h]

These calculations assume unit depth of 1 m in the z direction.

5-13 I SUMMARY
Most of this chapter has been concerned with flow over flat plates and the associated heat
transfer. For convenience of the reader we have summarized the heat-transfer, boundary-
layer thickness, and friction-coefficient equations in Table 5-2 along with the restrictions
that apply. Our presentation of convection heat transfer is incomplete at this time and will be
developed further in Chapters 6 and 7. Even so, we begin to see the structure of a procedure
for solution of convection problems:

1. Establish the geometry of the situation; for now we are mainly restricted to flow over
flat plates.

2. Determine the fluid involved and evaluate the fluid properties. This will usually be at
the film temperature.

3. Establish the boundary conditions (i.e., constant temperature or constant heat flux).
4. Establish the flow regime as determined by the Reynolds number.
5. Select the appropriate equation, taking into account the flow regime and any fluid prop-
erty restrictions which may apply.

6. Calculate the value(s) of the convection heat-transfer coefficient and/or heat transfer.

At the conclusion ofChapter 7 we shall give a general procedure for all convection problems
and the information contained in Table 5-2 will comprise one ingredient in the overall recipe.
The interested reader may wish to consult Section 7-14 and Figure 7-15 for a preview of
this information and some perspective of the way the material in the present chapter fits in.

REVIEW QUESTIONS
1. What is meant by a hydrodynamic boundary level?
2. Define the Reynolds number. Why is it important?
3. What is the physical mechanism of viscous action?
4. Distinguish between laminar and turbulent flow in a physical sense.


