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Abstract. 
 
When dealing with iterated Möbius mappings we need to pay attention to the eigenvalues and 
eigenvectors of the corresponding matrix. These are important as they show us the properties 
of the resulting composite Möbius mapping. The eigenvalues in question give two different 
cases with three and respectively two possibilities per case. In the first case we assume that 
the eigenvalues are not equal; thus the three different possibilities obtained are from the ratios 
of the values. If the absolute value of the ratio between the first and the second eigen value is; 
(i) less than one, the image of z converges to zero, (ii) larger than one, the image of z 
converges to infinity, (iii) is equal to one, the image rotates in a circle. The second case is 
when the eigenvalues are equal to each other, which creates two possibilities for the picture of 
z. The first possibility is represented by an identity, whereas the second possibility shows an 
image of z at infinity. A summary of our observations is that the composite function, ( )A z∞  

maps z on a fix point in all cases – either on ( )0B  or on ( )B ∞  where B is a conjugate matrix.  
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I. Introduction 
 
As we are introduced to a Möbius transformation it is interesting to see how this phenomenon 
works. We know that Möbius mappings are composite functions that are composed of a 
rotation and a translation, but what we do not know is what happens when we repeat a 
Möbius transformation on a point?  These affine transformations operate in the complex 

plane and have the form of ( )az bz
cz d

A z+
=

+
, where .When the 

mappings occur the image of the point that we are investigating can be of the following four 
possibilities; (i) a line is mapped onto a line, (ii) a line is mapped onto a circle, (iii) a circle is 
mapped onto a circle, (iv) a circle is mapped onto a line.  Thus, we are going to apply theories 
that are constructed for real numbers on complex numbers. We can for instance see how the 
Möbius transformation has its correspondence in matrix form, and we can apply the theory of 
eigenvalues and their eigenvectors too. These eigenvalues are going to show us what happens 
to the image of a point after repeated Möbius transformations.  

a b
A

c d
 

=  
 

, , ,a b c d ∈

 In connection with Möbius transformations it is good to introduce what is meant by 
the Riemann’s sphere. As we are speaking of complex numbers it is hard to avoid the 
Riemann’s sphere, as it is the representative of all the numbers that we are talking about. The 
sphere can be seen as a one-to-one image of the complex plane, and the north pole of this 
sphere represents the point of infinity. Thus, with the help of the Riemann’s sphere we can 
feel that infinity is in fact a point.  

The aim of this investigation is therefore to see what happens when we iterate a 
Möbius mapping. 
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II. Working with Eigenvalues 

If  and 
a b

A
c d


= 
 


 ( )az bz

cz d
+

=
+

A z , then what happens with ( )nA z if ?  (0) n →∞

In order to analyze this we need to find the eigenvalues for the following matrix equation, 
 

a b x x
c d y y

λ
   

=   
   





     (1) 

 
which we can rewrite into,  
 

( )
( )

0
0

a b x
c d y
λ

λ
−    

=    −     
   (2) 

 
Thus, we are now to find the determinant of the matrix equation. Since we are not looking for 
the trivial solution of the eigenvectors, the det a Iλ−  must be zero. Therefore the 
characteristic equation is, 
 

( )
( )

det 0
a b

c d
λ

λ
−

=
−

    (3) 

 
and its determinant is, 
 

( )
( )

det 0
a b

c d
λ

λ
−

=
−

( )( ) 0a d bcλ λ⇔ − − − =    (4) 

 
We hereby obtain two roots 1 2,λ λ ∈ . 
 
Consequently, there are therefore two possible cases for the eigenvalues. The first case is 
when 1 2λ λ≠ , and the second is when 1 2λ λ= . We can therefore investigate both cases with 
chronology, starting with case 1.  
 
III. Case 1. ( 1 2λ λ≠ ) 
The eigenvalues that we have obtained give restrictions to values of eigenvectors. Thus, the 

eigenvectors 1

1

x
y

 

 

 and 2

2

x
y

 

 



1

 are restricted to:   . We therefore get the 

relation,  

1 2 2

1 2

0
0

x x
y y

     
≠ ≠ ∈   

    

 
1

1
1 1

x x
A

y y
λ

   
=   

   
     (5) 

 and 
 

2
2

2 2

2x x
A

y y
λ

   
=   

   
     (6) 
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Hence, (5) and (6) can be rewritten into, 
 

1 2 1 1 2 2 1 2 1

1 2 1 1 2 2 1 2 2

0
0

x x x x x x
A

y y y y y y
λ λ λ
λ λ λ

     
= =     

     





   (7) 

 

We now want to make 1

2

0
0
λ

λ


 


  the subject, which is displayed in (8),  

 
1

1 2 1 2 1

1 2 1 2 2

0
0

x x x x
A

y y y y
λ

λ

−
    

=    
    





    (8) 

 

For simplicity we call 1 2

1 2

x x
y y

 

 

 =B. Hence, we can rewrite (8) into, 

 11

2

0
0

B AB
λ

λ
−  

= 
 

      (9) 

 
Thus, the results from (9) can be rewritten into, 
 

1 1

2

0
0

A B B
λ

λ
− 

∴ =  
 

     (10) 

 
We can now test what will happen to (10) if we raise it to the power of 2: 
 

2
1 1 12 1 1

2 2

0 0
0 0 0

A B B B B B B
λ λ λ

λ λ λ
1

2

0− −     
= × =     

     
−

1

2

−

  (11) 

 
We can also test what will happen to (11) if we increase the power by one to get a power of 3. 
 

3
1 1 1 13 1 1 1

2 2 2

0 0 0 0
0 0 0 0

A B B B B B B B B
λ λ λ λ

λ λ λ λ
− − −       

= × × =       
       

   (12) 

 
We can now generalize the results obtained in (11) and (12) by induction and form our 
conclusion, 
 

     1 1

2

0
0

n
nA B B

λ
λ

− 
∴ =  

 
    (13) 

(13) can for simplicity be rewritten into, 
 

11

2

0
0

n
n

nA B B
λ

λ
− 

=  
 

     (14) 
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We have now shown what will happen to the matrix  if we raise it to n. 
a b

A
c d


= 
 




We can now call the matrix 
 

1

2

0
0

n

n M
λ

λ
 

= 
 

     (15) 

 
Since we know the nature of M’s behaviour, we can find out how the conjugate 1BMB−  
behaves.  
 
 
 
 
 
 
 
  

B  
* z 

w *  

Picture 1 
 
From picture 1 we obtain that ( )z B w= , and consequently ( )1w B z−= .  
 
If ( ) ( )( )1M w M B z−= , then ( ) ( )1BM w BMB z−= .  
 
We can now draw another picture displaying what happens when M gets involved in the 
transformation.  
 
 
 
 
 
 
 
 
 

B
2z  

 
1z  

2w  

1w  

1BMB−

1B−

      *

      *
 M 

      *

      *
 

Picture 2 
 
We can hereby read from picture 2 the values of z. 
 

( )1z B w= 1       (16) 
 

( )2z B w= 2

2

      (17) 
 
If we assume that ( )1M w w= , then we can rewrite the value for  from (16). Thus, 2z
 

( ) ( )( ) ( )( )1
2 2 1z B w B M w BM B z−= = = = ( )1

1BMB z−    (18) 
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A conclusion from this is that 1BMB−  is the “converter” of M from the w-parameter to the z-
parameter.  

We may now ask, what happens with 1

2

0
0

n

n

λ
λ

 
 
 

when ? n →∞

 
The Möbius transformation in question is, 
 

1

2

0
0

n

n

zz λ
λ
+

+
1

2

n

zλ
λ

 
=  
 

    (19) 

 
Hence there are three possibilities: 

(i) 1

2

1λ
λ

<  

 

Here 1

2

0
n

zλ
λ

 
→

 
  , when  n →∞

Except when  z = ∞
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Picture 3 
 

In picture 3 we can see how the successive image of z converges to 0, as 1

2

0
n

zλ
λ

 
→

 
  , 

in (i). n →∞

The second case (ii) is when 1

2

1λ
λ

>  

 

Here 1

2

n

zλ
λ

 
→∞

 
  , when  n →∞

Except when  0z =
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Once again we can look at picture 3 but think in the opposite manner as for possibility (i). 
That is, z moves to infinity as . n →∞
 

The third option (iii) is when 1

2

1λ
λ

=  

Here we can see all the z values rotate in a circle, hence there are finite z if 1

2

arg λ
λ

 
∈ 

 
 

Otherwise, there are infinite values of z. This is displayed in picture 4 where we can see that 
there is a finite amount z rotating in a circle.  
 

 
 

z 

Picture 4 
 
We can now investigate what happens when 1 2λ λ= , seen in case 2.   
 
IV. Case 2. ( 1 2λ λ= ) 
Once again we have the Möbius transformation, 
 

( )az bz A
cz d

+
=

+
z , where  

a b
A

c d
 

=  
 

Now, we assume that the eigenvalues 1λ  and 2λ  are equivalent. Then, we can conjugate using 

a matrix K, where K
α β
χ δ

 
= 
 

  and its inverse, 1K
δ β
χ α

− − 
=  − 

. 

We can also assume that the determinant of K is: 
 

1αδ βχ− = , where , , ,α β χ δ ∈  
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Thus, 1 a b
K AK

c d
δ β α β
χ α χ

− −  
=   −   δ





 

 

=
* *

a c b d
α β

χ α χ α χ δ
 
 − + − + 

 
 
 

 

 

=  2 2

* *
*a c b dχα α χ αχ

 
 − + − + 

= ( )2 2c d a bα αχ χ+ − −  
 
Hence, we can make ( )2c d a b 2α αχ χ+ − −  equal zero, which can be done by choosing 

proper values of K
α β
χ δ

 
 
 

= . 

 
For instance, if we use χ =1, then we need to find a value of α so , 
which works unless, 

( )2 0c d a bα α+ − − =
0ac d= − = , where 0b ≠ . (*) 

 
Another alternative can be, 1α = , where we instead need to find a value of χ  so the equation 

. (**) ( )2 0b d a cχ χ− + − + =
 
Note however, both (*) and (**) cannot happen, therefore at least one of the choices is 
possible.  
 
Now, it is easy to find a value of β  and δ  to make 1αδ βχ− = . 
 

We have now made a conjugate of A to form the matrix   . 
* *
0 *
 

 
 

It enables us now to change notation of the new matrix, which we can call 
0
q r

s
 

 
  . Note 

however that the eigenvalues of this matrix do not change due to this conjugate, as the 
characteristic polynomial is, 
 

( )
( )

det
0

q X r
s X

−
−

= ( )( ) ( )( )0q X s X X q X s− − − = − − = ( )( )1X X 1λ λ− −  (20) 

 

Hence, 1q s λ= =  gives the matrix, 1

10
rλ
λ

 
 
 

 

 
Now, we have two possible possibilities, the first is (iv) where we assume that . This 
indicates that the Möbius transformation is 

0r =
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1

1

0zz zλ
λ
+

=      (21) 

 
Hence, it is an Identity transformation, “we understand everything about it”.   
 
The second possibility (v) displays when r 0≠ . Here the Möbius transformation is  
 

1

1 1

z r rz zλ
λ λ

 +
= + 

 
     (22) 

If we now iterate (22) n times and call 
1

r v
λ

 
= 

 
, we get 

  
z z nv= +       (23) 

 
We can illustrate this by using argand diagrams and vectors. (see picture 5 and 6) 
 
 
 
 
 
 
 
 
 
 
 
 
         Picture 5     Picture 6

( )Im z

2 v×
v×

( )Re z

( )Im z

v  
z 

 

 

z 

 
In picture 5 we are given the original values, whereas in picture 6
the original picture is translated  steps. Thus if we are to gener
that if , then the image of z will be at infinity. This image ca
on the Riemann’s sphere, which makes it easier to grasp.  

3n =
n →∞

 
V. Conclusion 
As our research is complete we can look at our research questi
eigenvalues and eigenvectors play a significant role when deciding
Möbius transformation is repeated. We gain two possible cases whe
eigenvalues are different, and the second case when they are equal. 
three possibilities for the image of z, when iterated n times as n go

magnitude of the ratio of the two is larger than one, 1

2

1λ
λ

> , then 

spiral motion from towards infinity as n increases, where n is the nu

transformation have been iterated. However, if this quotient is less t

image of z moves in a spiral motion towards zero, which is the sec

 - 11 - 
 
Re

v3×

 we
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re th
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ond
1

( )z  

 see how the image of 
e picture 6, we can see 
 fact be seen as a point 

(0) and state that the 
at will happen when a 
e first one is when the 
e 1 show that there are 
owards infinity. If the 

image of z moves in a 

er of times the Möbius 

 one, 1

2

1λ
λ

< , then the 

 possibility. The third 
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possibility is when the ratio is equal to one, 1

2

1λ
λ

= , where its consequence is that the image 

of z rotates in the unit circle. In Case 2 we have only two possibilities, as the eigenvalues are 
equal to each other. The first possibility is when the image of z represents an identity, whereas 
the second possibility maps the image of z at infinity, which can be seen as a fix point on the 
Riemann sphere. This image of infinity is illustrated on the Riemann’s sphere, in picture 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 Picture 7 

∞
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