Show that for the Gaussian potential, the cross-section is,
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Hint: g° = 2k*(1-cos 0) <> d(cosd) = -1 d(q?) = -3,

Preliminaries: Amplitude, and consequent cross section, and formula with which to complete the square,
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Putting in the Gaussian potential to [I.2] and completing the square +iqr'— (- ) = [L“”Z]z,
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Something lets you deform a contour...

The following sum of integrals has integrals that are both integrated over straight lines in the complex plane.
Deform the contours back to the origin and avoid the singularity at x — oo to prove the integral formula,
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