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Abstract

A Euclidean interpretation of special relativity is given wherein proper time τ acts as the fourth
Euclidean coordinate, and time t becomes a fifth Euclidean dimension. Velocity components in both
space and time are formalized while their vector sum in four dimensions has invariant magnitude c.
Classical equations are derived from this Euclidean concept. The velocity addition formula shows a
deviation from the standard one; an analysis and justification is given for that.
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1 Introduction

Euclidean relativity, both special and general, is
steadily gaining attention as a viable alternative
to the Minkowski framework, after the works of
a number of authors. Amongst others Montanus
[1,2], Gersten [3] and Almeida [4], have paved the
way. Its history goes further back, as early as 1963
when Robert d’E Atkinson [5] first proposed Eu-
clidean general relativity.

The version in the present paper emphasizes ex-
tending the notion of velocity to the time dimen-
sion. Next, the consistency of this concept in 4D
Euclidean space is shown with the classical Lorentz
transformations, after which the major inconsis-
tency with classical special relativity, the velocity
addition formula, is addressed. Following para-
graphs treat energy and momentum in 4D Eu-
clidean space, partly using methods of relativistic
Lagrangian formalism already explored by others
after which some Euclidean 4-vectors are estab-
lished.

A simplified and popularized version is
available that will get you in the ’right
mood’. It can be found on the web at
http://www.euclideanrelativity.com.

2 The Time Dimension

Minkowski interpretations of special relativity treat
time differently from spatial dimensions, showing
from the Minkowski metric where the time compo-
nent is given the opposite sign. Some alternative
interpretations (e.g. [1-4]) seek positive definite
Euclidean metrics for space-time. Also in this arti-
cle, the time dimension will be treated as a regular
fourth dimension in Euclidean space-time.

If time is considered a fourth spatial dimension,
then it must show properties similar to those found
in the other three. In there we encounter properties
like length, speed, acceleration, curvature etc., ex-
pressed respectively as s, ds/dt, d2s/dt2, Ra

bcd etc.
Of those properties, a single one can be measured
relatively easily in the time dimension: the ’length’
or timeduration ∆t. That raises the question of
how a hypothetical speed in time, let us call it χ,
should be expressed mathematically. In [6], Greene
has given a derivation of an expression that can be
used as the velocity component in the Euclidean

time dimension. Rewriting the usual Minkowski
invariant

c2 = (dct/dτ)2 − (dx/dτ)2 − (dy/dτ)2 − (dz/dτ)2

(1)
into Euclidean form:

c2 = (cdτ/dt)2+(dx/dt)2+(dy/dt)2+(dz/dt)2 (2)

one arrives at the temporal velocity component

χ = cdτ/dt (3)

This clearly defines τ as the coordinate for the
fourth Euclidean dimension, and it says that the
velocity components in all four dimensions involve
derivatives with respect to t, which then can no
longer represent the fourth dimension. It can only
be an extra, fifth dimension, x5 (provided we index
the other four x1, x2, x3, and x4 respectively, with
τ = x4). This fifth dimension is sometimes treated
as a parameter in Euclidean approaches similar to
special relativity, e.g. in [1,2], but here it will be
treated as a genuine extra Euclidean dimension. A
general expression for speed in the time dimension
(henceforth refereed to as time-speed) is now:

χ = cdx4/dx5 (4)

while the scalar value of time-speed χ is

χ =
√

c2 − v2 (5)

The general expression for spatial velocity compo-
nents in 4D Euclidean space-time is

vi = dxi/dx5 (6)

3 Using Time-Speed in Special
Relativity

It will be shown that the Lorentz transformation
equations for length and time can be reproduced
from the Euclidean context.

Maintaining orthogonality for all Euclidean di-
mensions, Eqs. (2) and (5) imply that the axes
for the proper time dimension and the spatial di-
mension in the direction of the initial motion must
have rotated for the moving object, as seen from the
rest frame of the observer, in fact defining Lorentz
transformations as rotations in SO(4). See also [1],
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where this is referred to as a Relative Euclidean
Space-Time. In the approach that follows now,
these axes will therefor (unlike in the Minkowski di-
agram) both rotate in the same direction, clockwise
or counter clockwise, depending on the direction of
the motion. The diagrams in Fig. 1 and Fig. 2
should illustrate this.
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Figure 1: 4D representation of an observer at O
and an object A, both at rest.

Figure 1 depicts an object A at rest together with
an observer at O, also at rest. The horizontal axis
shows both the spatial dimensions x′i, i = 1, 2, 3,
for the object A as well as the spatial dimensions xi

for the observer. The vertical axis shows both time
dimensions with notation conform Eq. (2), so x4 =
cτ . Due to object A being at rest, relative to the
observer, the axes overlap. The circle is just a tool
to better show the rotation that will be depicted in
Fig. 2.

Definitions are as follows:

• Vector C indicates the 4D velocity, having
magnitude c, of object A.

• Vector V, of magnitude v, and X, of magni-
tude χ, are the projections of this velocity C
on, respectively, the spatial dimensions and the
proper time dimension of the observer.

• l′ indicates the proper length of object A in the
spatial direction x′i in the rest frame of object
A (in this example l′ is also set to c).
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Figure 2: Object A in motion relative to observer.
The dimensional axes of object A have rotated rel-
ative to the observer.

• l and l4 are, respectively, the projections of this
proper length on the spatial dimensions and
the proper time dimension of the observer.

In Fig. 2, object A moves with speed v relative
to the observer. This leads to a relative rotation of
dimensions x′4 and x′i such that V is the projection
of the original 4D velocity C of object A on the
xi axis of the observer at rest. The situation is
examined at the instant where xi = x′i = x4 =
x′4 = 0.

The Lorentz transformation equation for x is

x′ = γ(x− vt) (7)

where
γ = 1/

√
1− v2/c2 (8)

but this factor can also be written as

γ = c/
√

c2 − v2 = c/χ (9)

leading to
x′ = c(x− vt)/χ (10)

At t = 0, the length of object A will be contracted,
as measured by the observer, according to

x = x′χ/c (11)

so the contraction of length l can be written as

l = l′χ/c (12)
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which shows that l, as measured by the observer
at rest, is indeed the goniometric projection of the
proper length l′ on the xi axis.

Arrow l4 is the projected ’length’ component of
the moving object A on the proper time axis x4

of the observer as a result of the rotation of the
dimension x′i. This length is the manifestation of
the difference in proper time (the non-simultaneity)
between the endpoints of object A in motion ac-
cording to the Lorentz transformation equation for
time:

t′ = γ(t− vx/c2) (13)

and can be interpreted as a rotation ’out of space’
of the proper length l′ towards the negative axis of
x4. At t = 0 the proper-time difference between
tail and head of arrow l will be

t′ = −γvl/c2 = −lv/cχ (14)

From l = l′χ/c and l4 = l′v/c it follows that

l4 = −ct′ (15)

which confirms that l4 represents the proper-time
difference in object A. The factor c results from the
choice of units for space and time.

Summarizing, from the perspective of the ob-
server, the proper length l′ of object A is decom-
posed in the components l and l4 according to:

l′2 = l2 + l24 (16)

and so is also the 4D speed c of the object decom-
posed in the components χ and v:

c2 = χ2 + v2. (17)

Equation (16) thus combines Eqs. (7) and (13) into
a single Pythagorean equation in four dimensions.

4 Relativistic Addition of Ve-
locities

It appears that the Euclidean approach as used in
the previous Section does not yield the same equa-
tion for relativistic addition of velocities as used in
special relativity. Although this particular point
may be a serious obstacle to the acceptation of this
proposal, it obviously is necessary to point it out.

Figure 3 depicts a situation with three reference
frames: a stationary unprimed frame x, a moving
primed frame x′ and a third, double primed frame
x′′ of an object that moves relative to both other
frames, x and x′. Each frame has dimensional axes
rotated relative to the other frames as a result of
the relative motion.
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Figure 3: Relativistic addition of velocities in three
reference frames, each with rotated dimensional
axes relative to each other.

• Vector V of magnitude v is the spatial velocity
of an observer with rest frame x′ as measured
by an observer with rest frame x.

• Vector W of magnitude w is the spatial veloc-
ity of a third object as measured by the ob-
server with rest frame x.

• Vector U of magnitude u is the spatial velocity
of that same object but now as measured by
the observer with rest frame x′.

When u, v, and w are parallel, the classical rela-
tion between them is:

w =
u + v

1 + uv/c2
(18)

If we apply the approach as used consistently until
now it yields the expression:

w = c cos(−α) = c sin(
1
2
π + α)

= c sin(β + ϕ) = c(cosϕ sin β + cos β sin ϕ)

= u
√

1− v2/c2 + v
√

1− u2/c2 (19)
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This expression is not nearly similar to the classical
expression in Eq. (18).

Like Eq. (18), Eq. (19) still limits the speeds
as measured by both observers to the maximum of
c, which is also clear by inspection of the Figure.
Some remarks will be made now on the probability
of either of the equations to be the right one:

1. Equation (18) is in fact based on the univer-
sality of light speed and the basis for reason-
ing is that an object, e.g. a photon, having
speed c for an observer in frame x will still have
that same speed c for an observer in frame x′.
This is one of Einstein’s original postulates and
also in this Euclidean approach it will still be
maintained as a valid postulate, which essen-
tially means that the photons velocity vector,
as measured from the moving frame, must have
rotated along with that frame. The third ob-
ject, having speed w, as measured from frame
x, is not a photon but a mass-carrying parti-
cle for which such a rotation apparently does
not apply. It must therefor be emphasized that
Eq. (19) for now may only be applied to mass-
carrying particles.

2. Equation (18) shows a discontinuity that is un-
usual in physics. In Fig. 4, Eq. (18) is plotted
for the situation where u always equals v.
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Figure 4: Graph of classical equation for relativistic
addition of velocities.

With u and v nearing c, the resulting w will
also near c, which is in accordance with the

classical view. But if (as a matter of math-
ematical experiment) the range of u and v is
extended beyond the maximum value of c then
the plot looks like depicted in Fig. 5.
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Figure 5: Classical graph for relativistic addition of
velocities with hypothetical (superluminal) exten-
sions.

The part from Fig. 4 can still be recognized
but it is clear now that this actually forms part
of a continuous function that extends beyond
c. The part beyond u = v = c may not be used,
solely because the classical function is not de-
fined, nor ever shown to be valid, for such su-
perluminal extensions (actually the space-like
quadrants in the classical light cone). This fact
strongly suggests that the graph from Fig. 4
is an approximation of the real function.

Finally, both Eqs. (18) and (19) are plotted
together in Fig. 6.

Equation (19) is almost identical for speeds be-
low about c/2 but begins to deviate at higher
speeds. The top of Eq. (19) corresponds to
u = v = c/

√
2. From the circle diagram in

Fig. 3 it shows that the time-speed of the ob-
ject, as measured from frame x, then becomes
zero. Equation (19) further shows decreasing
values for w in situations where the values of u
and v go beyond c/

√
2 (the frame of the mov-

ing object then rotates beyond π/2 relative to
frame x). It turns out that in that case the cor-
responding time-speed for the object becomes
negative. (This situation might be related to
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