DYNAMICAT MO OF
wars the case with 20" and QM) no finite measurement
cun induce similar transitions This is o kind of super-
selection rule, which effectively avoids the apparent
degeneracy 10 show up as physical effects ™ The usual
description of the world by means of @ and ordinary
Dirae particles must be regarded as only the most
convenient one

We still are Jeft with some paradoxes The X con-
servation implies the existence of a vonserved X
cuzrenl:

(3 32)
(3 329
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which can readily be verified from Eg (26) On the
other hand, for a massive Dirac particle the continuity
equation is not satisfied ;

a”‘@c m).m.”vg,(m} = 2"‘,_"[,(,:.‘,:},:1‘!,(,") (‘; 3 3)

T & massive Dirac particle has 1o be o real vigenstate of
the system, how can this be reconciled? The answer
would be that the X-current operator taken belween
real one-nucleon stiates should not be given simply by
fy,ys because of the 'radiative corrections ' We expect.
instead

(W' jusl pr=a (PN p1e(p), (330

where the renormalized quantity X should be, rom
relativistic invariance grounds, of the form

‘YP (fl"r:f;) = I"l (’]‘J)';TF}'.’F{' F!(‘fh’l:q;:;
g=p'—p, = pite

The continuily equation (332}, together with kg
{3 33), further reduces this to

{333)

Fys By 2m=F,
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The res! nucleon is not a point particle Tts N-current
(336) is provided with the drumatic Yanomalows”
term

To understand the physicai meaning of the anomalous
term, we have to make use of the dispession relations
The form factors Fy and & will, in genceral, satisly
dispersion relations of the form

imb (—#
f g,
(g4 —Te)n?

assuming one subtraction. Lach singularity at »* corre-
sponds 1o some physical inlermediate state. Thus i
F(0)=20, By (3.36) indicates that there is a4 pole at
g*=1 for F'y (and no sublraction}, which means in turn
that there is an isolated intermediate state of zero mass

_ ¢
Fog)y=F{0y——
w

(3.37)

Hlhis was discussed by R Haag, Kgl Panske Videnskih
Selskah, Mat -fys Medd 29, No 12 (1935) Seealso 1. van Hove,
Physicn 18, 145 (1952)

ITEMENTAYRY PAYRTICTES an

Fio 2 Graphs correspending to thy Buthe-Salpeter equation in
“Tanlder™ approximation Uhe Vhick ling is a bound state

To see its natare, we Like & time-like ¢ in ils own rest
frame and go 1o the limit ¢* — 0. The anomalous term
has then only the lime component, and is proportiona
10 the amplitude for creation of a nucleon pairin s f=0-
stale. Hence the zete mass state must have the same
property as this pair It belongs Lo nucleon number zero,
so that we may call it & zero-mass pseudoscalar myson
T arder for o yy-fnvariant Hamilionian such as Fg (2 6}
to allow massive wmclean states and @ nowvanishing X
current Jor q=0, it is terefore necessary to hove al the
same tine psendoscalar zero-mass mosous conpled with the
wncteons. Since we did not have such mesons in the
(heory, they must be regarded as sccondary products,
ie, bound states of nucleon pairs This conclusion
would not hold if in Eq (3 36) F(g)=0(¢") near ¢*=0
A nuddeon then would have always X'=0 Such a
possibility cannot be excluded. We will show, however,
that the pseudosclar zero-mass bound states do follow
explicitly, once we assume the nontrivial sohution of the
self-energy equation

1v. THE COLLECYIVE STATES

brom the general discussion of Sees 2 and 3, we may
expect the existence of collective states of the funda-
mental field which woukl manifest themselves as stuble
or unstable particles In particular we have argued that,
as a eonsequence of the vy invariance, a pseudoscalal
zero-mass stsle must exist. We want now 1o discuss the
problem in detal, trying Lo determine the mass spec-
trum of the collective excitations (at leasl its general
features} and Lhe stremygth of their coupling with the
nucleons These states must be considered as a direct
cffect of the same primary interaction which produces
the mass of the nucleon, which itself is a collective effect
We will study the bound-state problem through the usc
of the Bethe-Salpeter equalion, taking mte account ex-
plicitly the seil-consistency conditions We first verify
in the following the existence of the zero-mass pseudo-
scalar state

The Bethe-Salpeter erguation for a bound paiv B deals
wilh the amplitude

Ba,p) = (O] T (@ (P ()} B) (4 1)

As is well known, the equation is relatively casy Lo
handle in the ladder approximetion. In our case we have
a fout-spinor point interaction and the analog of the
“ladder’ approximation would be the jteration of the
simplest closed loop (sce Fig 2} in which all lines repre-
genl dressed particies We introduce the vertex function
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I' related to & by
(p)=Sp (p-E)V (b, p=20)Se (p= L) (42)

All we have to do then is to set up the integral equation
generated by the chain of diagrams, looking for solutions
having the symmetry properties of a pseudoscalar state.
This means that our solutions must be proportional to
s This requirement makes only the pseudoscalar and
axial vector part of the interaction contribute to the
integral equation. We have

P(p+0, p—10)

= """“"'Ynf TrlysS et (p'+3q)
(2m)?
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For the moment let us ignore the pseudovector term on
the right-hand side. It then follows that the equation
has a constant solution I'=Cys if ¢*=0. To see this, first
observe that for the special case ¢=0, Eq. (4.3) reduces
to

(4.3)

Sigo dip
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which is nothing but the self-consistency condition
(3.7), provided that the same cutoff is applied. Since the
pseudoscalar term of Eq. (4.3) gives a function of ¢*
only, the same condition remains true as long as ¢*=0.

When the pseudovector term is included, we have still
the same eigenvalue ¢*=0 with a solution of the form
T=Cys+iDyyy-q, which is not difficult to verify (see
Appendix).

We now add some remarks. I'irst, the bound state
amplitude for this solution spreads in space over a region
of the order of the fermion Compton wavelength 1/m
because of Eq. (4.2), making the zero-mass particle only
partially localizable. We want also to stress the role
played by the v invariance in the argument. We had in
fact already inferred the existence of the pseudoscalar
particle from relativistic and v; invariance alone, and at
first sight the same result seems to follow now essen-
tially from the self-consistency equation. However, we
must notice that only the scalar term of the Lagrangian
appears in this equation while only the pseudoscalar
part contributes in the Bethe-Salpeter equation. It is
because of the ys-invariant Lagrangian that the Bethe-
Salpeter equation can be reduced to the self-consistency
condition.

Along the same line we could try to see whether other
bound states exist in the “ladder” approximation. How-
ever, besides calculating the spectrum, it is also im-

(4.4)

G, JONA-LASINIO

portant to determine the interaction properties of these
collective states with the fermions. For this purpose the
study of the two-“nucleon” scattering amplitude ap-
pears much more suitable, as we shall realize after the
following remark. Once we have recognized that in the
ladder approximation the collective states would appear
as real stable particles, we must expect Lo the same
degree of approximation poles in the scaltering matrix
of two nucleons corresponding to the possibility of the
virtual exchange of these particles. TFor definiteness we
shall refer again as an example to the pseudoscalar zero-
mass particle. Let us indicate by J,(¢) the analytical
expression corresponding to the graph whose iteration
produces the bound state [ Fig. 3(a)]. We construct next
the scattering matrix generated by the exchange of all
possible simple chains built with this element. This
means that we consider the set of diagrams in Fig. 3(b).
The series is easily evaluated and we obtain

(4.5)

2gotys 1Yz,
1—7,(q)

where the vy’s refer to the pairs (1,1) and (2,2), re-
spectively. The meaning of this result is clear: because
of the self-consistent equation J,(0)=1, Eq. (4.5) is
equivalent to a phenomenological exchange term where
the intermediate particle is our pseudoscalar massless
boson (Fig. 4). The coupling constant G can now be
evaluated by straightforward comparison. Before doing
this calculation we need the explicit expression of J »(g).
Using the ordinary rules for diagrams, we have

Ip(g)=—
T ey
4 (2 p?) — g?
f (m*+p*)—q . (46)
[p+i2+m )0 (p— L) +m]

It is however more convenient to rewrite Jp in the form
of a dispersive integral, and if we forget for a moment
that it is a divergent expression, a simple manipulation
gives

g A2 (1—dm?/k?)}
Te(g)=—" f e (460
477'2 4am? 92+K2
. 1 (9)
oy 4
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F16. 3. The bubble graph for Jp and the scattering matrix
generated by it.
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In order for this expression to be meaningful, a new

cutoff A must be introduced. There is no simple relation

between this and the previous cutoffs. The dispersive

form is more comfortable to handle and accordingly we

shall reformulate the self-consistent condition Jp(0)=1,
A

or
&0 )
1 == e f (1—4dm?/x2) ¥, (4.7)
4’

4m?

It may be of interest to remark at this point that Eq.
(4.7) can be obtained also if we think of our theory as a
theory with intermediate pseudoscalar boson in the
limit of infinite boson mass. We are now in a position to
evaluate the phenomenological coupling constant G.
From Egs. (4.6') and (4.7) we have
4 A (1 —dm?/x?)}
Jp(gt)= l—qaiﬂ—f E~————/l(1:<'3, (4.8)
472 J g2 @it

which leads immediately to the result

Gp?
——-—:27r[

A (1 —dm2/x?)}
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This equation is interesting since it establishes a con-
nection between the phenomenological constant Gp
and the cutoff independently of the value of the funda-
mental coupling go. This fact exhibits the purely dy-
namical origin of the phenomenological coupling Gp.
Actually go is buried in the value of the mass m.

So far we have exploited only the v; vertex. What
happens then if the scalar part is iterated to form chains
of bubbles similar to those we have already discussed?
The procedure just explained can be followed again, and
a quantity J s(g) can be defined similarly with the result

go M (E—4m?)(1—4m? /i)
Js(g)y=— f di?. (4.10)
4? 4m? 112 + K2

Tt is immediately seen that because of Eq. (4.7)
Js(—4m?) =1, (4.11)

which causes a new pole to appear in the S matrix for
¢*== —4m? This means that we have another collective
state of mass 2m, parity -+ and spin 0! We observe that
it is necessary to assume the same cutoff as in the
pseudoscalar case in order that this result may be
obtained. The choice of the same cutoff in both cases
seems to be suggested by the vs invariance as will be
seen later. We also notice the peculiar symmetry ex-
isting between the pseudoscalar and the scalar state: the
first has zero mass and binding energy 2m, while the
opposite is true for the scalar particle. So in the bound-
state picture the scalar particle would not be a true
bound state and should be, rather, interpreled as a

Fic, 4. The equiva-
lent phenomenological one-
meson exchange graph.

correlated exchange of pairs in the scattering process.!®
The “nucleon-nucleon” forces induced by the exchange
of the scalar particle are, of course, of rather short range.
The general physical implications of these results will be
discussed more thoroughly later.

The phenomenological coupling constant G5 for the
scalar meson is given by

Gt A (L—dm?/i?)} 77!
—*=Z7r[f -——-——~dt<2:| . (4.12)
4w amr (iP—4m?)

Let us next turn to the vector state generated by
iteration of the vector interaction. In this case we obtain
for each “bubble” a tensor

Tviur= v quiu/ 4*) T v,

4 2 .
Lo (1‘! A di®

[ [ ——

dn® 3 Jyne PP (4.13)

2m*
X (1+—‘— (1—4m?/i2)h

K

Perhaps a remark is in order here regarding the evalua-
tion of Jy. It suffers from an ambiguity of subtraction
well known in connection with the photon self-energy
problem. The above result is of the conventional gauge
invariant form, which we take to be the proper choice.
Equation (4.13) leads to the scattering matrix

[ ! v ] (4.14)
gy Y=Y Y4 |, .
pl““.]v / l(lm‘]v)q‘z

where the sccond term is, of course, cffectively zero. It
can be easily seen that the denominator can produce a
pole below dm? for sufficiently small A% In fact, from Egs.
(4.7) and (4.13), we find

(8/3)m*<puv*. (4.15)

The coupling constant is given by

Gy® A e 2m? -1
=37r|:f d;c'l—-——2(1-4mz/tc'~’)5] . (4.16)

4 amt (= py?)

It must be noted that the mass of the vector meson now
depends on the cutoff, unlike the previous two cases.
Finally we are left with the pseudovector state. We

15 OF course this and other heavy mesons will in general become
unstable in higher order approximation, which is beyond the scope
of the present paper.



