
The compass sitting ontop of another compass

with a wheel drawing circles problem (aka the

roundabout on top of a piece of paper problem).
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To find the area enclosed by a closed contour in polar coordinates (assuming
that the contour also encloses the origin) we say that

A =
∫ 2π

0

dφ

∫ r(φ)

0

rdr =
1
2

∫ 2π

0

dφr2 (φ) ,

where r (φ) describes the radial distance to the contour for a given angle φ
(where φ = 0 takes you positively along the x-axis). Now if the curve is given
by some parameter t then this becomes

A =
1
2

∫ t1

t0

dt
dφ (t)

dt
r2 (t) .

The limits in the above integral are chosen such that φ (t0) = 0 and φ (t1) = 2π.
So if you’re given some curve v (t) = (x (t) , y (t)), then the task is to find its
representation in polar coordinates v (t) = (r (t) , φ (t)). You can then use these
in the expression for A.

The problem is easier if you say

z (t) = x (t) + iy (t) = r (t) eiφ(t)

then in the complex plane your contour is described by z (t), with some radial
ordinate r (t) and an angular ordinate φ (t). Note that if you take real, or
imaginary parts of z (t) you will recover x (t) or y (t). Given your two compasses,
z (t) will look like:

z (t) = R1e
iωt + R2e

2iωt.

(where the position of compass 1 is R1e
iωt etc).
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0.1 Skip this bit if you can’t be bothered reading it.

For this problem to make sense, we have to demand that the every point on the
curve is determined by a unique value of t (up to 2π/ω, since z (t) is periodic on
this range), otherwise we will have crossing points and this will lead to having the
contour enclosing a part of itself, or two connected areas or somesuch (probably
the latter case is soluble, but the former doesn’t make much sense). So, if we
look at z for some value of t and another value t′, if these z are the same then

z (t)
z (t′)

= 1

and the problem is non doable (or can’t be botheredable), and for z (t′) = 0,
then we require z (t) = 0. So

z (t)
z (t′)

=
R1e

iωt + R2e
2iωt

R1eiωt′ + R2e2iωt′
= 1.

Obviously t = t′ is a solution, otherwise,

R1

(
eiωt − eiωt′

)
= R2

(
e2iωt′ − e2iωt

)
,

and so

R1

R2
=

(
e2iωt′ − e2iωt

)
(eiωt − eiωt′)

=

(
eiωt′ − eiωt

) (
eiωt′ + eiωt

)
(eiωt − eiωt′)

,

R1

R2
= − [cos (ωt′) + cos (ωt)] − i [sin (ωt′) + sin (ωt)] .

Now since the LHS is real (R1 and R2 are just radii) then we require that

[sin (ωt′) + sin (ωt)] = 0

and
R1

R2
= − [cos (ωt′) + cos (ωt)] .

Since the RHS is always < 2 (given that t′ 6= t), if we choose the ratio

R1

R2
> 2, which is R2 <

R1

2

then each point on the contour will be described by a unique value of t. Anyway,
carrying on...

0.2 Start reading again

So now if you want to find the distance squared from the origin to any point on
z (t), this is just the modulus squared

r2 (t) = z (t) z∗ (t) = |z (t)|2 .
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So for the compasses:

r2 (t) = R2
1 + R2

2 + 2R1R2 cos (ωt) .

If we want to find the time derivative of φ (t), we start by finding

eiφ(t) =
z (t)
r (t)

,

and therefore

e2iφ(t) =
z2 (t)
r2 (t)

=
z2 (t)

z (t) z∗ (t)
=

z (t)
z∗ (t)

.

So

2i
d

dt
φ (t) =

1
e2iφ(t)

d

dt
e2iφ(t) =

(
z∗ (t)
z (t)

)
d

dt

(
z (t)
z∗ (t)

)
=

1
z (t)

d

dt
z (t)− 1

z∗ (t)
d

dt
z∗ (t) .

Looking at the explicit expressions for z (t)

d

dt
z (t) = R1e

iωt + R2e
2iωt = iωR1e

iωt + 2iωR2e
2iωt = iωz (t) + iωR2e

2iωt,

d

dt
z∗ (t) = R1e

−iωt + R2e
−2iωt = −iωR1e

−iωt − 2iωR2e
−2iωt = −iωz∗ (t) − iωR2e

−2iωt.

Hence

2i
d

dt
φ (t) =

iωz (t) + iωR2e
2iωt

z (t)
−

(
−iωz∗ (t) − iωR2e

−2iωt
)

z∗ (t)

= 2iω + 2iωR2 Re
(

e2iωt

z (t)

)
.

We can simplify this further

d

dt
φ (t) = ω +

ωR2

|z (t)|2
Re

(
z∗ (t) e2iωt

)
= ω +

ωR2

r2 (t)
Re

([
R1e

−iωt + R2e
−2iωt

]
e2iωt

)
= ω +

ωR2R1

r2 (t)
cos (ωt) +

ωR2
2

r2 (t)
.

(You can also get the same expression for the maximum allowed R2 by de-
manding that φ̇ (t) > 0 here). Putting r2 (t) and φ̇ (t) into the expression for A
gives

A =
1
2

∫ t1

t0

dt

[
ω +

ωR2R1

r2 (t)
cos (ωt) +

ωR2
2

r2 (t)

]
r2 (t)

=
ω

2

∫ t1

t0

dt
[
r2 (t) + R2R1 cos (ωt) + R2

2

]
=

ω

2

∫ t1

t0

dt
[
R2

1 + 2R2
2 + 3R1R2 cos (ωt)

]
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Next we have to choose limits of integration. The lower limit corresponds to
t = 0, and since z (t) is periodic on 2π/ω, this becomes the upper limit,

A =
ω

2

∫ 2π/ω

0

dt
[
R2

1 + 2R2
2 + 3R1R2 cos (ωt)

]
= πR2

1 + 2πR2
2.

0.3 Conclusion

I’ve no idea if the above result is correct. If someone could check it Duhoc would
be very greatful. If it *is* correct, then if someone could offer a hand-waving
interpretation of the second term then that would be nice.
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