
8300 2003 day 2:  Hilbert's Nullstellensatz 
 
Motivation: Root fields for polynomials in several variables 
 We know if  k is any field that a polynomial f(X) in k[X] always has a root in some finite  
algebraic extension field E of k.  In fact if g(X) is any irreducible factor of f in the ufd (unique 
factorization domain) k[X], then E = k[X]/(g) is such an extension field, where x = X mod(g) is a 
root, since g(X) is zero, mod g(X).  E is finite dimensional over k since it is spanned as vector 
space by the monomials 1,X,X2,....,Xd-1 of degree less than d = deg(g).  Since g divides f, the 
irreducible polynomial g generates a maximal ideal (g) containing the ideal (f), in the pid (principal 
ideal domain) k[X]. 
   
 What about polynomials of several variables?  I.e. if f(X1,...,Xn) is a polynomial in 
k[X1,...,Xn], is there a finite algebraic extension field E of k in which f has a “root”, (i.e. a 
coordinate vector (a1,...,an) in En at which f vanishes)?  More generally, if {fj} is a collection of 
polynomials in k[X1,...,Xn], is there a finite algebraic extension of k in which all the fj have a 
common zero?  This might seem obvious, but it is not so trivial to prove.  In fact it is not always 
true for a simple reason.  If a is a common root of all polynomials {fj} then it is also a root of any 
linear combination of them, i.e. of any polynomial of form ∑gjfj with gj in k[X1,...,Xn].  So if the 
collection {fj} generates the “unit ideal” in the polynomial ring, i.e. if 1 is a linear combination of 
the {fj},  then there cannot be any common roots.  So the correct question to ask is whether 
every collection {fj} that generates a “proper” ideal (i.e. smaller than the unit ideal) has a 
common root, or equivalently whether every proper ideal I in k[X1,...,Xn] has a common root, in 
some finite algebraic extension field E of k.  This is true as we will see, and is called the 
nullstellensatz, (originally due to Hilbert). 
 
 First let’s see what such an extension field F would look like.  (I will write k[X] 
sometimes for the polynomial ring in n variables.)   For any extension F of k, there is a well 
defined k - algebra map, “evaluation at a”, from k[X]-->F, taking f(X1,...,Xn) to f(a1,...,an).  
Moreover, if M is the kernel of this map, then k[X]/M embeds into F, so that we have inclusions 
k in k[X]/M in F.  Since every polynomial in I vanishes at a, we I is contained in M, and since 
k[X]/M is embedded in the field F, M is a prime ideal.  We claim M is a maximal ideal. 
 
 Since F is assumed to be a finite algebraic extension of k, hence a finite k vector space, 
then k[X]/M = E is a domain which is also finite as a vector space over k.  Since multiplication 
by a non zero element u of the domain E gives an injective k linear map of this domain to itself, it 
must be surjective, hence there is an element v also in E with uv = 1.  Thus E is an algebraic field 
extension of k of form E = k[X]/M, where I is in M = a maximal ideal, and since the common root 
a of the ideal I equals the value of  X (= (X1,...,Xn)) at a, the root a actually lives in En.   
 
This shows that the only place to look for common roots of an ideal I in k[X1,...,Xn], is in 
quotient fields E of form k[X1,...,Xn]/M, where M is a maximal ideal of k[X1,...,Xn] containing I, 
just as in the case of one variable.  Thus the question arises, for which maximal ideals M in 
k[X1,...,Xn] is the field k[X1,...,Xn]/M actually finite algebraic over k?  We will prove eventually 



that this is true for all maximal ideals.  If you look back at the proof in one variable you will see 
that it used the division algorithm, something which is notoriously lacking in the elementary 
theory of polynomials of several variables.  I.e. given a finite set of polynomials {fj} in several 
variables, and another polynomial g, how do you decide in a finite number of steps, by some kind 
of repeated division, whether g is a linear combination of the polynomials {fj}?  There is a 
solution to this question today, in terms of “Grobner bases” for an ideal, and with this theory 
one can prove the nullstellensatz in a more algorithmic way.  We will give a more classical, less 
constructive proof. 
 
 Before proving the general theorem, let’s look at a special case where the ideal I has a 
common zero vector a in the base field k, the field of coefficients of the polynomials in I.  Since a 
= (a1,...,an) where all components ai belong to k, the evaluation map k[X1,...,Xn]¨k has values in 
k, and has kernel M a maximal ideal of k[X1,...,Xn] containing I.  Moreover since evaluation takes 
each variable Xi to ai, the kernel M contains the polynomials Xi-ai for all i = 1,...,n.  Now the 
ideal (X1-a1,...,Xn-an) is already maximal, so must equal M.  I.e. in case the ideal I in k[X] has a 
common zero vector a with components in k, the kernel of the corresponding evaluation map at a 
has form (X1-a1,...,Xn-an).  Conversely if I is contained in any maximal ideal of form (X1-
a1,...,Xn-an), with all ai in k, then the map evaluation at a = (a1,...,an) is a surjective k algebra 
map k[X1,...,Xn]-->k whose kernel contains I, so a is a common zero of I with coefficients in k.   
Equivalently, if ƒ:k[X1,...,Xn]-->k is any k algebra map with kernel M, and if ƒ(Xi) = ai, then M 
contains the maximal ideal (X1-a1,...,Xn-an) hence equals it, and a is a common zero of any ideal 
contained in ker(ƒ). 
 
 More simply, the arguments above show there are one one correspondences between the 
following sets for any field k:   
 
{points (a1,...,an) in kn}  
 
≈ {k algebra maps ƒ:k[X1,...,Xn]-->k}  
 
≈ {maximal ideals M in k[X1,...,Xn] such that k-->k[X1,...,Xn]/M is an isomorphism}  
 
≈ {maximal ideals of form (X1-a1,...,Xn-an) in k[X1,...,Xn]} 
 
These correspondences are as follows:  a point a in kn yields the k algebra map ƒ = evaluation at 
a; a k algebra map ƒ:k[X1,...,Xn]-->k is always surjective since it already is surjective on k, so ƒ 
has a maximal ideal kernel M such that the composition k-->k[X1,...,Xn]-->k[X1,...,Xn]/M ≈ k is 
an isomorphism; a maximal ideal M such that the composition k-->k[X1,...,Xn]/M is an 
isomorphism is always of form (X1-a1,...,Xn-an) where ai = the unique element of k such that Xi 
= ai, mod M; finally a maximal ideal of form M = (X1-a1,...,Xn-an) determines the point a by 
setting ai equal again to the unique element of k congruent mod M to Xi. 
 



 We want to prove the nullstellensatz which will simplify these correspondences as 
follows, in the case where k is algebraically closed: 
 
Theorem:  If k is algebraically closed the following are all true, and equivalent. 
 
(i) Every proper ideal of k[X1,...,Xn] has a common zero in kn. 
 
(ii) For every maximal ideal M of k[X1,...,Xn], the composition  k-->k[X1,...,Xn]/M is an 
isomorphism. 
 
(iii)  Every maximal ideal M of k[X1,...,Xn] has form M = (X1-a1,...,Xn-an). 
 
Cor:  There is a one - one correspondence between points of kn and maximal ideals of 
k[X1,...,Xn], with the point a corresponding to the kernel of evaluation at a. 
 
I like Zariski`s version as follows which applies to all fields. 
 
Zariski`s nullstellensatz: 
If k is any field and M in k[X1,...,Xn] is any maximal ideal, the field k[X1,...,Xn]/M = E is a 
finite algebraic extension of k. 
 
Cor:  If k is algebraically closed, the inclusion k in k[X1,...,Xn]/M = E is an isomorphism, so M 
= (X1-a1,...,Xn-an) for some a in kn. 
 
To prove Zariski`s version, all we need is basic facts about integral extensions, i.e. the ring 
theoretic analog of algebraic extensions of fields. 
 
Proof of Hilbert's Nullstellensatz, (uncountable case only) 
 If k is a field, we define an affine algebraic set as a subset of kn which is the common zero 
locus of some non empty collection of polynomials {fi} in k[X1,....,Xn].  It is easy to see that 
the common zero locus of the collection {fi} is the same as the common zero locus of the ideal 
generated by the set {fi}.  We will denote this zero locus by Z({fi}) for zero locus, or V({fi}) for 
variety.  The most basic question we can ask is whether the zero locus of a given set of 
polynomials is empty, i.e. whether a system of equations has any common solutions.  If k is an 
arbitrary field, even Q, this can be a very difficult question.  If k is algebraically closed there is a 
simple answer due to Hilbert, i.e. the common zero locus of a collection {fi} of polynomials in 
k[X1,....,Xn] is empty if and only if the ideal generated by the collection {fi} is the unit ideal.   
 If there is only one polynomial f in the collection, the proof is an easy induction.  For n = 
1 it is just the definition of an algebraically closed field.  I.e. f has no zeroes if and only if f is a 
non zero constant, if and only if f is a unit, iff f generates the unit ideal.  Note also that a non 
constant polynomial has zeroes but only a finite number of them, so since an algebraically closed 
field k is infinite, there are points of k where the polynomial vanishes and also points where it 
does not vanish.  This is crucial for the induction. (Alternatively, note that if f were a non 



constant polynomial which vanished everywhere then 1+f would be non constant and have no 
zeroes, contradicting algebraic closure of the field.)   Now by induction we may assume that a 
non constant polynomial in k[X1,....,Xn-1] must have zeroes but does not vanish everywhere, 
and write f(X1,....,Xn) as a polynomial in Xn, with coefficients which are polynomials in 
k[X1,....,Xn-1].  If our polynomial f is “constant in Xn”, i.e. if Xn does not occur in f, then we 
are done by induction, i.e. our polynomial vanishes at some but not all points.  If Xn does occur 
in f, by induction there are points of kn-1 where the coefficient polynomial of the leading power 
of Xn does not vanish.  Evaluating the coefficient polynomials at such a point we get a non 
constant polynomial in Xn with constant coefficients, hence there exist a non empty but only a 
finite set of values of Xn making the polynomial zero.  Thus our original polynomial has zeroes, 
but does not vanish everywhere.  QED. 
 
Remark:  Geometrically this inductive argument says that either the hypersurface {f=0} of kn is 
a cylinder over an algebraic set in kn-1, or there are points of kn-1 over which the hypersurface 
has a finite non empty set of points.  I.e. if we project the hypersurface into kn-1, the image of 
the projection is non empty, and either the image is an algebraic subset of kn-1 or else there is a 
proper algebraic subset Z of kn-1 such that there are finitely many points of the hypersurface 
over each point of the complement of Z.   
 Thus projection of our hypersurface into kn-1 represents it either as a cylinder, or 
generically as a finite cover of some open subset.  In general if we write f as a polynomial in Xn, 
with coefficients which are polynomials in X1,...,Xn-1, there are infinitely many points of the 
hypersurface over each common zero in kn-1 of the coefficient polynomials.   
 If the coefficient polynomials of the non constant terms in Xn generate the unit ideal in 
k[X1,...,Xn-1], the projection is surjective, and there are are finitely many points over each point 
of kn-1.  We call the projection a "quasi finite" surjection in that case.  If the coefficient of the 
highest power of Xn is a unit, e.g. if f is monic in Xn of degree d, then there are exactly d points 
(counted with multiplicities) over each point of kn-1.  In that case the projection is called a 
"finite" surjection.   
 For example, the projection of the hyperbola {XY-1 = 0} onto the X axis is quasi finite 
(but not surjective), while the projection of the parabola {Y2 - X = 0} onto the X axis is finite, 
and surjective.  The difference is the hyperbola has a vertical asymptote (over the point X = 0 
where the coefficient of the leading power of Y vanishes) but the parabola does not.  
 
For sets of more than one polynomial the result takes more work. 
Theorem: ("weak nullstellensatz")  The common zero locus of a (non empty) collection {fi} of 
polynomials in k[X1,....,Xn] is empty if and only if the ideal generated by the collection {fi} is 
the unit ideal.  I.e.  V({fi}) is empty if and only if 1 can be written as a linear combination 1 = ‡ 
gifi of the polynomials {fi}, with coefficients gi in k[X1,....,Xn]. 
Proof:  There is an easy proof for uncountable, algebraically closed fields.  Since this covers the 
complex numbers C, but not the algebraic closures of Q or Zp, we will give it now and then give a 
more general proof using the theory of integral ring extensions in a later lecture on finite maps. 



One direction is trivial: if 1 can be written as a linear combination 1 = ∑ gifi of the polynomials 
{fi}, then any common zero of the {fi} would be a zero of the polynomial 1, a contradiction.  So 
assume the set {fi} does not generate the unit ideal.  Then they all belong to some maximal ideal 
m.  We will show that for any maximal ideal m in k[X1,....,Xn], there exist constants a1,....,an 
such that the polynomials {X1-a1,....,Xn-an} all belong to m.  Since the ideal generated by the 
Xi-ai is maximal, being the kernel of the map k[X1,....,Xn]-->k given by evaluation at a, this will 
prove that m = (X1-a1,....,Xn-an).  Then the point a = (a1,....,an) is a common zero of all 
polynomials in m, including therefore the {fi}.  (Note that any polynomial f in k[X1,....,Xn] can 
be written as f(X) = ∑ (Xi-ai) gi(X) + f(a).  To prove this note it is true for f = Xi and f = 
constant, and is also true for sums and products of polynomials for which it is true.  Hence it is 
true for all polynomials.  To obtain such an expansion just put Xi = Xi – ai +ai and expand.) 
 
 Now we prove that if m is any maximal ideal in k[X1,....,Xn], there exist elements 
a1,....,an such that for all i, Xi-ai belongs to m.  If n = 1, then k[X1] is a pid, so m is prime and 
principal, hence is generated by one irreducible polynomial.  Since k is algebraically closed an 
irreducible polynomial must be linear, and after multiplication by a unit, can be taken to be 
monic, hence of form X1-a1.  That does the case n = 1. 
 
 Now let m be maximal in k[X1,....,Xn] with n > 1, and for each i consider the map k[Xi]--
>k[X1,....,Xn]/m.  Since m is maximal hence prime, the kernel of this map is a prime ideal of 
k[Xi].  If the kernel is non zero, then it is a maximal ideal of k[Xi], hence contains an element of 
form Xi-ai which then lies in m, as desired.  So we must rule out the possibility that the kernel of 
the map could be zero.  If the kernel of the map k[Xi]-->k[X1,....,Xn]/m were zero, then k[Xi] 
would be embedded as a subring in the field k[X1,....,Xn]/m, and hence its field of fractions k(Xi) 
would be embedded as a subfield and hence as a k vector subspace.  Since the target field 
k[X1,....,Xn]/m is a finitely generated algebra over k, it is a countable dimensional vector space 
over k.  We will show that k(Xi) cannot be embedded in k[X1,....,Xn]/m if k is uncountable, by 
showing that k(Xi) is an uncountable dimensional vector space over k. 
   
 To do this we will prove the uncountable subset {1/(Xi-c):  all c in k} is independent over 
k.  For simplicity we write X for Xi.  If  ∑ aj/(X-cj) = 0 is a linear dependency relation in k(X) 
where all cj are distinct, then multiplying by ∏j (X-cj) gives ∑j (aj ∏t≠j(X-ct)) = 0.  If we set X 
= cj, all terms of this sum except the jth one vanish, so we get aj (∏t≠j (cj-ct)) = 0.  Since for t ≠ 
j, (cj-ct) ) ≠ 0, we must have aj = 0.  Thus the original linear dependency relation was the trivial 
one.  This proves the nullstellensatz for uncountable fields.  QED. 
 
 This result tells us that over an algebraically closed field k, every ideal of k[X1,....,Xn] = 
k[X] except the unit ideal (1), defines a non empty algebraic subset of kn.  Thus there is a 
surjection from the collection of non trivial or “proper” ideals of k[X], to the collection of non 
empty algebraic subsets of kn, taking J to V(J).  To know a bit more about this parametrization 
of algebraic sets by ideals, we should also ask when two different ideals define the same subset.  
Notice that an algebraic set V is defined by a unique largest ideal, the ideal I(V) of all polynomials 



vanishing on the set V.  I.e. if J is any ideal, and V(J) the associated algebraic set, then I(V(J)) is 
the largest ideal defining the set V(J).  In particular, V(I(V(J))) = V(J), and I(V(J)) contains J.  
There is no reason for I(V(J)) to equal J.  Indeed if m = (X1-a1,....,Xn-an), then the point  a = 
(a1,....,an) is defined by any one of the infinite sequence of ideals m, m2, m3, m4,........, of which 
m is the unique largest one.  Note that if J is any ideal and f is in the “radical” of J, i.e. fr belongs 
to J for some r ≥ 1, then f vanishes on every point of V(J).  Thus I(V(J)) contains the radical of J.  
The "strong nullstellensatz" of Hilbert says that the converse is true over an algebraically closed 
field k, and hence that algebraic subsets of kn corresponds 1-1 with radical ideals of k[X], i.e. 
those ideals which are equal to their own radical.  By a well known trick, this result is a corollary 
of the weak nullsatz.  First we deduce the result using the trick and then explain how the trick 
may be motivated geometrically. 
 
Theorem (strong nullstellensatz): If k is an algebraically closed field, i.e. a field for which the 
weak nullstellensatz is true, and if J is any ideal of k[X1,....,Xn], then a polynomial f in k[X] 
vanishes on the set of common zeroes of J if and only if some positive power of f belongs to J. 
Proof:  If J = ( f1,..,..,fr) in k[X1,....,Xn], and f vanishes on V(J), we add one more variable Xn+1 
and consider the ideal (f1,....,fr, Xn+1f - 1) in k[X1,....,Xn+1].  By hypothesis, the last generator 
of this ideal equals  -1 on the set V(J) where the first r generators vanish, hence the new ideal has 
no common zeroes.  Thus by the nullstellensatz for the ring k[X1,....,Xn+1], the new ideal is the 
unit ideal.  Thus there exist polynomials g1,....,gr, g in k[X1,....,Xn+1] such that ∑ figi + (Xn+1f-
1)g = 1.  Now map the polynomial ring k[X1,....,Xn+1] into the fraction field of k[X1,....,Xn] 
sending Xn+1 to 1/f.  (If f = 0, there is nothing to prove, since then f belongs to J.)  Under this k 
algebra map, 1 goes to 1, and (Xn+1f-1)g goes to 0, so the equation  ∑ figi + (Xn+1f-1)g = 1 in 
k[X1,...,Xn+1] yields an equation  ∑ fi(X1,...,Xn)gi(X1,...,Xn, 1/f) = 1 in k(X1,...,Xn), where the 
only denominators are powers of f.  If we multiply by a suitably high power of f, say fs, this 
eliminates all denominators, and yields an equation ∑ fi(X1,...,Xn)hi(X1,...,Xn) = fs, as desired. 
QED. 
 
Corollary:  If k is algebraically closed, then assigning an ideal J to its set of common zeroes V(J), 
and assigning an algebraic set V to its corresponding ideal I(V), are mutually inverse (1-1) 
correspondences between the collection of all radical ideals of k[X1,....,Xn] and the collection of 
all algebraic subsets of kn. 
 
Exercise:  The collection of all algebraic subsets of kn is closed under taking arbitrary 
intersections and finite unions, hence forms the family of closed sets for a topology on kn called 
the Zariski topology.  The induced topology on a (closed) algebraic set V is likewise called the 
Zariski topology for V.  
 
We can refine our correspondences further to determine which algebraic sets correspond to prime 
ideals.  Note in particular that every prime ideal is radical. 
 
Definition:  An algebraic set Y is called “irreducible” if and only if whenever V,W are algebraic 



sets such that Y = V U W, ( V union W), then either Y = V or Y = W.  Equivalently, whenever Y 
is contained in a union V U W, of algebraic sets then Y is contained in either V or W. 
 
Proposition:  An algebraic set Y in kn is irreducible if and only if its ideal I(Y) in k[X1,....,Xn] is 
prime. 
proof:  If I(Y) is not prime there exist f,g such that fg is in I(Y) but neither f nor g vanishes on Y.  
Then Y is contained in V(f) U V(g), but not in either V(f) or V(g), so Y is reducible.  Conversely 
if Y is reducible, then Y = V U W where both V,W are strictly smaller than Y.  Thus I(Y) is the 
intersection of I(V) and I(W), ideals which are strictly larger than I(Y).  Then if f belongs to I(V) 
but not to I(Y), and if g belongs to I(W) but not to I(Y), then fg belongs to the intersection of I(V) 
and I(W), i.e. to I(Y), which therefore is not prime.  QED. 
 
 
Thus when k is algebraically closed, we have 1-1 correspondences as follows: 
 
{maximal ideals of k[X]}      <-------->    {points of kn} 
 
{prime ideals of k[X]} <-------->  {irreducible algebraic sets of kn} 
 
{radical ideals of k[X]}   <----------> {all algebraic subsets of kn}  
 
Notice these correspondences are inclusion reversing, i.e. a larger ideal has a smaller set of 
common zeroes, and a larger algebraic set has a smaller ideal of functions which vanish on it. 
 
We obtain as corollaries information about the coordinate rings of affine algebraic sets.  We often 
use the phrase "algebraic variety" or just "variety" to describe an algebraic set, but sometimes 
these terms are used to refer only to an irreducible algebraic set, so be careful. 
 
Definition: If Y is an affine algebraic subset of kn with ideal I(Y), the “coordinate ring of Y” is 
defined to be k[Y] = k[X1,...,Xn]/I(Y) = the k algebra of functions on Y which are restrictions of 
polynomial functions from k[X1,...,Xn]. 
 
Remark: It follows from the weak nullstellensatz that if Y is an affine algebraic set in kn, for an 
algebraically closed field k, there is a 1-1 correspondence between points of Y and maximal ideals 
of k[X1,...,Xn] that contain I(Y), i.e. with all maximal ideals of k[Y]. 
 
Definition:  A polynomial map between two algebraic sets Y, Z in kn, km respectively, is 
defined by m polynomial functions on Y that map Y into Z. 
 
Useful Exercises: 
 Given a polynomial map p from Y to Z, we get a k algebra map from k[Z] to k[Y] by 
pulling back functions by composing with p.  Conversely, every such k algebra map k[Z] --> 
k[Y], is induced by a unique polynomial map Y-->Z.   
 (This is true for any field, algebraically closed or not.  One way to check this is by using 



the image of the coordinate functions k[Z] --> k[Y] to define the map Y-->Z.  A more intrinsic 
way is as follows.  When k is not algebraically closed, not every maximal ideal of k[Y] arises from 
a point of Y.  Those maximal ideals that do arise from points are exactly the kernels of k algebra 
homomorphisms k[Y]-->k, or equivalently those maximal ideals m such that the composition k--
>k[Y]/m is an isomorphism.  Then given a k algebra homomorphism k[Z]-->k[Y], we can define a 
map back on points Y-->Z, by pulling back maximal ideals of this special type, e.g. by 
composing k algebra homomorphisms k[Z]-->k[Y]-->k.  In particular, two affine algebraic sets 
Y,Z over any field k, are isomorphic (via mutually inverse polynomial maps) if and only if their 
coordinate rings k[Z], and k[Y] are isomorphic as k algebras.  (Is this correct? Please check me.)) 
 
Corollary: (i) The ring k[V] of an affine algebraic set V is a finitely generated k algebra without 
nilpotents, and if k is algebraically closed every such k algebra occurs as k[V] for some V.  
(ii)  The ring k[V] of an affine algebraic set V is a domain if and only if V is irreducible. 
proof:  In (i) to show every fin. gen. k algebra R without nilpotents occurs as k[V], just map 
some k[X1,...,Xn] onto R with kernel J, and let V = V(J).  QED. 
 
 Thus if k is algebraically closed, the category of irreducible affine algebraic sets over k, is 
equivalent to the category of finitely generated k algebras which are domains, but under this 
equivalence, morphisms in the two categories go in opposite directions. 
 
These results allow a definition of an abstract affine algebraic set, independent of a a particular 
embedding. 
 
Definition: An (abstract) affine variety over an algebraically closed field k, is a pair (Y,R), 
consisting of a set Y and a finitely generated k algebra R of k valued functions on Y, such that the 
map taking a point p of Y to the maximal ideal of functions in R vanishing at p, is a 1-1 
correspondence between points of Y and maximal ideals of R. 
 
Example: Let Y be an algebraic subset of kn (irreducible for simplicity), k algebraically closed, 
and f an arbitrary non zero function in k[Y].  Then we claim the "principal" open subset Uf = {f 
≠ 0} of Y, is an abstract affine variety, with coordinate ring k[Uf] = k[Y][1/f], thought of as a 
subring of the fraction field of k[Y].  I.e. this is a finitely generated k algebra of functions on Uf, 
and its maximal ideals correspond exactly to those maximal ideals of k[Y] which do not contain f, 
i.e. to points of Uf.   
 To obtain an embedding of Uf as a closed subset of some affine space, take the generators 
g1,...,gn of k[Y] corresponding to the variables X1,...,Xn, and add in the additional generator 1/f 
to get generators for k[Uf].  Then mapping the polynomial ring k[X1,...,Xn,Xn+1] onto k[Uf] by 
sending X1 to g1,...,Xn to gn, and Xn+1 to 1/f, defines a k algebra map Uf-->kn+1, taking 
(x1,...,xn) to (x1,...,xn, 1/f(x1,...,xn)).  The map is injective and the image is the closed subset of 
points (x1,...,xn,xn+1) in kn+1 such that xn+1.f(x1,...,xn) -1 = 0.  Thus this image set is an affine 
closed subset V of kn+1.  Since the map back on rings of functions takes X1 to g1,...,Xn to gn, 
and Xn+1 to 1/f, it maps the ring k[X1,...,Xn+1]/(Xn+1.f(X1,...,Xn) -1) of V isomorphically to 
k[Uf].  Thus as maps of abstract affine varieties, this is an isomorhism. 



 This explains the trick of Rabinowitz in the proof above that the weak nullstellensatz 
implies the strong nullstellensatz.  I.e. the fact that f vanishes on the zero locus of the fi in that 
proof, means that the fi have no zeroes on the set Uf where f does not vanish.  Translating this 
statement to the isomorphic affine closed set V in one dimension higher, we have that a certain 
collection of functions have no common zeroes in kn+1. Then the weak nullsatz says those 
functions generate the unit ideal there.  This then yields the original claim one dimension lower.  
   
 


